K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 1

a.

\(\Leftrightarrow2x^2-4x+4y^2=4xy+4\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-4x+4\right)=8\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(x-2\right)^2=8\) (1)

Do \(\left(x-2y\right)^2\ge0;\forall x;y\)

\(\Rightarrow\left(x-2\right)^2\le8\)

\(\Rightarrow\left(x-2\right)^2=\left\{0;1;4\right\}\)

TH1: \(\left(x-2\right)^2\Rightarrow x=2\) thế vào (1)

\(\Rightarrow\left(2-2y\right)^2=8\Rightarrow\left(1-y\right)^2=2\) (ko tồn tại y nguyên t/m do 2 ko phải SCP)

TH2: \(\left(x-2\right)^2=1\Rightarrow\left(x-2y\right)^2=8-1=7\), mà 7 ko phải SCP nên pt ko có nghiệm nguyên

TH3: \(\left(x-2\right)^2=4\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\) thế vào (1):

- Với \(x=0\Rightarrow\left(-2y\right)^2+4=8\Rightarrow y^2=1\Rightarrow y=\pm1\)

- Với \(x=2\Rightarrow\left(2-2y\right)^2+4=8\Rightarrow\left(1-y\right)^2=1\Rightarrow\left[{}\begin{matrix}y=0\\y=2\end{matrix}\right.\)

Vậy pt có các cặp nghiệm là: 

\(\left(x;y\right)=\left(0;1\right);\left(0;-1\right);\left(2;0\right);\left(2;2\right)\)

NV
13 tháng 1

b.

\(\Leftrightarrow2x^2+4y^2+4xy-4x=14\)

\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(x^2-4x+4\right)=18\)

\(\Leftrightarrow\left(x+2y\right)^2+\left(x-2\right)^2=18\) (1)

Lý luận tương tự câu a ta được 

\(\left(x-2\right)^2\le18\Rightarrow\left(x-2\right)^2=\left\{0;1;4;9;16\right\}\)

Với \(\left(x-2\right)^2=\left\{0;1;4;16\right\}\) thì \(18-\left(x-2\right)^2\) ko phải SCP nên ko có giá trị nguyên x;y thỏa mãn

Với \(\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\) thế vào (1)

- Với \(x=5\Rightarrow\left(5+2y\right)^2+9=18\Rightarrow\left(5+2y\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}5+2y=3\\5+2y=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-1\\y=-4\end{matrix}\right.\)

- Với \(x=-1\Rightarrow\left(-1+2y\right)^2=9\Rightarrow\left[{}\begin{matrix}-1+2y=3\\-1+2y=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=2\\y=-1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(5;-1\right);\left(5;-4\right);\left(-1;3\right);\left(-1;-3\right)\)

9 tháng 12 2018

\(3xy+x+15y-44=0\)

\(3y\left(x+5\right)+\left(x+5\right)-49=0\)

\(\left(x+5\right)\left(3y+1\right)=49\)

Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)

Có \(\left(x+5\right)\left(3y+1\right)=49\)

\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)

b tự lập bảng nhé~

NV
7 tháng 2 2021

\(x^2+2y^2-3xy=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow x-2y=0\) (do \(x>y\) nên \(x-y>0\))

\(\Leftrightarrow x=2y\)

\(\Rightarrow A=\dfrac{6.2y+16y}{5.2y-3y}=\dfrac{28y}{7y}=4\)

5 tháng 2 2019

Theo đề ra,ta có:

\(3xy-2y=x^2+5\)

\(\Rightarrow y\left(3x-2\right)=x^2+5\left(1\right)\)

Do x,y nguyên nên \(x^2+5⋮3x-2\)

\(\Rightarrow9\left(x^2+5\right)⋮3x-2\)

\(\Rightarrow9x^2+45⋮3x-2\)

\(\Rightarrow9x^2-6x+6x-4+49⋮3x-2\)

\(\Rightarrow3x\left(3x-2\right)+2\left(3x-2\right)+49⋮3x-2\)

\(\Rightarrow49⋮3x-2\)

\(\Rightarrow3x-2\in\left\{49;7;1;-7;-1;-49\right\}\)

\(\Rightarrow3x\in\left\{51;9;3;-5;1;-47\right\}\)

\(\Rightarrow x\in\left\{1;3;7\right\}\)vì \(x\in Z\)

Với \(x=1\)thay vào \(\left(1\right)\),ta được y=6

Tương tự thì với \(x=3\Rightarrow y=2;x=7\Rightarrow y=6\)

Vậy các cặp số \(\left(x;y\right)\)thỏa mãn điều kiện trên là:\(\left(1;6\right);\left(3;2\right);\left(7;6\right)\)

P/S:bài giải dài,nếu không có gì sai sót quá nghiêm trọng thì mong mọi người bỏ qua cho.

24 tháng 2 2018

Ta có:3xy-5=x\(^2\) +2y

⇒3xy-2y=x \(^2\)+5   (1)

Vì x,y là số nguyên nên:x\(^2\) +5 chia hết cho 3x-2

=>9(x^2+5) chia hết cho 3x-2 9x^2+45 chia hết cho3y-2

=>9x^2-6x+6x-4+49 chia hêt cho 3x-2

=>3x(3x-2)+2(3x-2)+49 chia hết cho 3x-2

=>46 chia hết cho 3x-2

=>3x-2 ∈ (49;-49;7;-7;1;-1)

<=>3x ∈ (51;-47;9;-5;3;1)

<=>x ∈ (1;3;17)

Thay x lần lượt vào (1) ta được y=6 hoặc y=2

Vậy y=2 hoặc y=2 

p/s : kham khảo

9 tháng 11 2018

\(x^2+2y^2-3xy+2x-4y+3=0\)

\(\Leftrightarrow\left(x^2-3xy+\frac{9}{4}y^2\right)+2\left(x-\frac{3}{2}y\right)+1-\left(\frac{1}{4}y^2+y+1\right)+3=0\)

\(\Leftrightarrow\left(x-\frac{3}{2}y\right)^2+2\left(x-\frac{3}{2}y\right)+1-\left(\frac{1}{2}y+1\right)^2+3=0\)

\(\Leftrightarrow\left(x-\frac{3}{2}y+1\right)^2-\left(\frac{1}{2}y+1\right)^2=-3\)

\(\Leftrightarrow\left(x-\frac{3}{2}y+1-\frac{1}{2}y-1\right)\left(x-\frac{3}{2}y+1+\frac{1}{2}y+1\right)=-3\)

\(\Leftrightarrow\left(x-2y\right)\left(x-y+2\right)=-3\)

Đến đây tự làm ( Dễ )