tính
\(\frac{15}{25}+\frac{80}{125}+\frac{12}{42}+\frac{78}{100}+\)\(\frac{18}{12}\)
Ai nhanh mk tk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{18}{15}-\frac{85}{100}+\frac{42}{10}+\frac{18}{9}-\frac{12}{16}\)
= \(\frac{7}{20}+\frac{42}{10}+\frac{18}{9}-\frac{12}{16}\)
= \(\frac{23}{20}+\frac{18}{9}-\frac{12}{16}\)
= \(\frac{63}{20}-\frac{12}{16}\)
= \(\frac{12}{5}\).
A=15x(1/7-1/12-1/98)/18(1/7-1/12-1/98)
A=15/18
A=5/6
h nhe!!!
\(A=\frac{15\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}{18\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}\)
\(A=\frac{15}{18}=\frac{5}{6}\)
\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}\)
Tách tổng trên thành 2 nhóm, ta được :
\(\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)\)
Mà \(\frac{1}{41}>\frac{1}{42}>...>\frac{1}{60}\); \(\frac{1}{61}>\frac{1}{62}>...>\frac{1}{80}\)
\(\Rightarrow\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)\)
\(>\frac{1}{60}.20+\frac{1}{80}.20=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)( đpcm )
\(A=\frac{15\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}{18\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{18}\right)}=\frac{15}{18}\)
\(A=\frac{15\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}{18\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}=\frac{15}{18}=\frac{5}{6}\)
Ta có:
A = [15 x (1-1/7-1/12-1/98)] / [ 18 x (1-1/7-1/12-1/98)]
= 15/18 = 5/6
\(A=\frac{15\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}{18\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}=\frac{15}{18}=\frac{15:3}{18:3}=\frac{5}{6}\)
k cho mk nha
\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}\)
\(=\frac{1\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}{4.\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}+\frac{3.\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right)}{4.\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right)}\)
\(=\frac{1}{4}+\frac{3}{4}=1\)
\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}\)
\(=\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{4\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}+\frac{3\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right)}{4\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right)}\)
\(=\frac{1}{4}+\frac{3}{4}\)
=1
\(\frac{12}{18}+\frac{1}{3}+\frac{1}{7}+\frac{2}{8}+\frac{27}{36}+\frac{42}{49}\)
\(=\frac{2}{3}+\frac{1}{3}+\frac{1}{7}+\frac{1}{4}+\frac{3}{4}+\frac{6}{7}\)
\(=\left(\frac{2}{3}+\frac{1}{3}\right)+\left(\frac{1}{7}+\frac{6}{7}\right)+\left(\frac{1}{4}+\frac{3}{4}\right)\)
\(=1+1+1\)
\(=3\)
\(a,=\left(\frac{15}{12}-\frac{3}{12}\right)+\left(\frac{5}{13}-\frac{18}{13}\right)\)
\(=1+-1\)
\(=0\)
Tính
\(\frac{15}{25}+\frac{80}{125}+\frac{12}{42}+\frac{78}{100}+\frac{18}{12}\)
\(\frac{3}{5}+\frac{16}{25}+\frac{6}{21}+\frac{39}{50}+\frac{3}{2}\)
\(\frac{15}{25}+\frac{16}{25}+\frac{39}{50}+\frac{6}{21}+\frac{3}{2}\)
\(\frac{62}{50}+\frac{39}{50}+\frac{12}{42}+\frac{63}{42}\)
\(\frac{101}{50}+\frac{75}{42}\)
\(\frac{4242}{2100}+\frac{3750}{2100}\)
\(\frac{7992}{2100}\)