Cho tam giác ABC vuông tại A có ba cạnh AB=6cm,AC=8cm và BC=10cm.Vẽ chiều cao AH từ đỉnh A đến cạnh đáy BC.
a/Tính chiều cao AH
b/Trên cạnh BC lấy điểm E sao cho BE=2 x EC.Tính diện tích tam giác AEC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đặt AH=x
=>BC=4x
Theo đề, ta có: 1/2*4x*x=72
=>2x^2=72
=>x=6
b: Xét ΔCAB có MN//AB
nên ΔCMN đồng dạng với ΔCBA
=>S CMN/ SCBA=(CM/CB)^2=1/4
=>SCMN=18cm2
a, Diện tích hình tam giác là : 9 cm2
b, Tỉ số % giữa Sabe và Sabc là 67 %
Bạn vẽ hình xong rồi thì đay là lời giải:
+ Diện tích ADE=1/2 dien h ADE (vì có chung chiều cao hạ từ E xuông đáy AD và AD= 1/2 AC)
Suy ra : dien h ABC= 2 * EDC
EB = 2* ED (1)
+Diện tích ADE= 1/2 diện tích ADE (vì có chung chiều cao hạ từ đỉnh A xông đáy BD và ED=1/2 BE) (2)
Từ (1) va (2) suy ra :
Diện tích ABE=diện tÍCh AEC mà 2 tam giác này có chung đáy AE nên chiều cao tam giác ABE hạ từ đỉnh B xuống đáy AE bằng chiều cao hạ từ đỉnh C xuông đáy AE
Ta thấy 2 chiều cao này chính là chiều cao của BEM và CEM , mà 2 tam giác này nên diện h BEM=CEM mà chúng có diện tích bằng nhau, chung đáy EM Nên BM=MC
BM= 8:2=4
a: BC=10cm
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\)
Do đó: ΔHAB∼ΔHCA
Ta cos : S tam giac ABC = 1/2 AB . AC = 1/2 . 6 . 8 = 24 cm2
S tam giacs ABC = 1/2 AH . BC = 1/2 . AH . 10 = 5AH
=> 5AH = 24
<=> AH = 4,8 cm