K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2021

a, Gọi \(I=AC\cap BD\)

Mà \(AC\in\left(SAC\right);BD\in\left(SBD\right)\)

\(\Rightarrow I=\left(SAC\right)\cap\left(SBD\right)\)

Lại có \(S=\left(SAC\right)\cap\left(SBD\right)\Rightarrow SI\) là giao tuyến cần tìm.

b, Gọi \(K=AC\cap BM\)

Mà \(AC\in\left(SAC\right);BM\in\left(SBM\right)\)

\(\Rightarrow K=\left(SAC\right)\cap\left(SBM\right)\)

Lại có \(S=\left(SAC\right)\cap\left(SBM\right)\Rightarrow SK\) là giao tuyến cần tìm.

19 tháng 6 2021

c, Gọi \(N=AD\cap BM\)

Mà \(AD\in\left(SAD\right);BM\in\left(SBM\right)\)

\(\Rightarrow N=\left(SAD\right)\cap\left(SBM\right)\)

Lại có \(S=\left(SAD\right)\cap\left(SBM\right)\Rightarrow SN\) là giao tuyến cần tìm.

d, Gọi \(T=AM\cap BC\)

Mà \(AM\in\left(SAM\right);BC\in\left(BMC\right)\)

\(\Rightarrow T=\left(SAM\right)\cap\left(SBC\right)\)

Lại có \(S=\left(SAM\right)\cap\left(SBC\right)\Rightarrow ST\) là giao tuyến cần tìm.

a: \(M\in\left(BMN\right);M\in SA\subset\left(SAC\right)\)

=>\(M\in\left(BMN\right)\cap\left(SAC\right)\)

\(C\in BN\subset\left(BMN\right);C\in\left(SAC\right)\)

=>\(C\in\left(BMN\right)\cap\left(SAC\right)\)

Do đó: \(CM=\left(BMN\right)\cap\left(SAC\right)\)

b: Xét (BMN) và (SAD) có

BN//AD

\(M\in\left(BMN\right)\cap\left(SAD\right)\)

Do đó: \(\left(BMN\right)\cap\left(SAD\right)=xy\); xy đi qua M và xy//BN//AD
d: Xét (MCD) và (SAB) có

CD//AB

\(M\in\left(MCD\right)\cap\left(SAB\right)\)

Do đó: (MCD) giao (SAB)=ab, ab đi qua M và ab//CD//AB

NV
11 tháng 9 2021

Nối BC và AD kéo dài cắt nhau tại F

\(\Rightarrow SF=\left(SBC\right)\cap\left(SAD\right)\)

Trong mp (SCD), nối CM kéo dài cắt SD tại G

\(\Rightarrow AG=\left(AMC\right)\cap\left(SAD\right)\)

Trong mp (SCD), nối SM kéo dài cắt CD tại E

\(\Rightarrow AE=\left(SAM\right)\cap\left(ABCD\right)\)

Trong mp (ABCD), nối BE cắt AC tại H

\(\Rightarrow SH=\left(SBM\right)\cap\left(SAC\right)\)

NV
11 tháng 9 2021

undefined

9 tháng 12 2021

9 tháng 12 2021

24 tháng 3 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a)

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giả sử:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ O ∈ (SAC) ∩ (SBD)

⇒ (SAC) ∩ (SBD) = SO

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta lại có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Lập luận tương tự câu b) ta có ⇒ (SAD) ∩ (SBC) = Sy và Sy // AD // BC.