K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 6 2021

Không gian mẫu: \(C_{17}^5\)

a. Số cách chọn sao cho có đúng 3 nam (nghĩa là chọn 3 nam từ 9 nam và 2 nữ từ 8 nữ):

\(n_A=C_9^3.C_8^2\)

Xác suất: \(P_A=\dfrac{C_9^3.C_8^2}{C_{17}^5}=...\)

b. Chọn nhiều nhất 1 nữ nghĩa là ta có 2 TH có thể xảy ra: có 1 nữ và 4 nam hoặc cả 5 đều nam

Số cách chọn: \(n_B=C_8^1.C_4^9+C_9^5\)

Xác suất: \(P_B=\dfrac{C_8^1.C_9^4+C_9^5}{C_{17}^5}=...\)

19 tháng 2 2018

Gọi A là biến cố: “5 bạn được chọn có cả nam lẫn nữ mà nam nhiều hơn nữ “

- Số phần tử của không gian mẫu: Ω = C 15 5 .

-Số cách chọn 5 bạn trong đó có 4 nam, 1 nữ là:  C 8 4 . C 7 1 .

- Số cách chọn 5 bạn trong đó có 3 nam, 2 nữ là: C 8 3 . C 7 2 .  

Số cách chọn 5  bạn được chọn có cả nam lẫn nữ mà nam nhiều hơn nữ là:

n A = C 8 4 . C 7 1 + C 8 3 . C 7 2 = 1666

Xác suất để 5 bạn được chọn có cả nam lẫn nữ mà nam nhiều hơn nữ là:

P A = n A Ω = 1666 C 15 5 = 238 429 .

Chọn đáp án B.

26 tháng 4 2023

a. \(C^1_7=7\left(cách\right)\)

b. \(C^1_3=3\left(cách\right)\)

c. Số cách không ra bạn nữ là chỉ chọn nam, vậy số cách chọn ít nhất 1 nữ là: \(7-3=4\left(cách\right)\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Số cách chọn 2 bạn bất kì trong 10 bạn đó là \(C_{10}^2\)

Cách 1:

Trường hợp 1: Hai bạn được chọn gồm 1 nam và 1 nữ

Có 7 cách chọn một bạn nam

Có 3 cách chọn một bạn nữ

=> Có 3.7 =21 cách chọn

Trường hợp 2: Hai bạn được chọn đều là nữ

Số cách chọn 2 trong 3 bạn nữ là: \(C_3^2\)

=> Xác suất để trong hai người được chọn có ít nhất một nữ là: \(\frac{{21 + C_3^2}}{{C_{10}^2}} = \frac{8}{{15}}\)

Chọn B.

Cách 2:

Gọi A là biến cố: “trong hai người được chọn có ít nhất một nữ”

Biến cố đối \(\overline A \): “trong hai người được không có bạn nữ nào” hay “hai người được chọn đều là nam”

Ta có: Số cách chọn 2 trong 7 bạn nam là \(n(\overline A ) = C_7^2\)

\(\begin{array}{l} \Rightarrow P(\overline A ) = \frac{{C_7^2}}{{C_{10}^2}} = \frac{{21}}{{45}} = \frac{7}{{15}}\\ \Rightarrow P(A) = 1 - P(\overline A ) = 1 - \frac{7}{{15}} = \frac{8}{{15}}\end{array}\)

Chọn B.

16 tháng 6 2019

Số khả năng chọn ngẫu nhiên 3 người từ 6*2= 12 người là C_123= 220

a. Gọi A là biến cố:” trong 3 người được chọn có đúng 1 nam”

n(A)= C61. C62= 90. Do đó P(A) =90/220=9/22

Chọn B

25 tháng 3 2018

26 tháng 1 2019

Chọn B.

Phương pháp

Tính xác suất theo định nghĩa P A = n A n Ω với n(A) là số phần tử của biến cố A, n Ω  là số phấn tử

của không gian mẫu.

Cách giải:

Số phần tử của không gian mẫu n Ω = C 20 2  

Gọi A là biến cố “Hai người được chọn có it nhất một nữ” thì A  là biến cố hai người được chọn không có nữ nào, tức là ta chọn 2 người trong số 7 nam.

Khi đó n A = C 7 2 ⇒ n A = C 10 2 - C 7 2  

Xác suất để hai người được chọn có it nhất một nữ là P = C 10 2 - C 7 2 C 10 2 = 8 15  

5 tháng 4 2019

Đáp án D

Xác suất cần tìm là  C 8 3 C 5 1 + C 8 4 C 5 + 8 4 = 70 143 .

1 tháng 12 2018

Chọn B

Lời giải.

Không gian mẫu là chọn tùy ý 4 người từ 13 người

Suy ra số phần tử của không gian mẫu là  Ω = C 13 4 = 715

Gọi A là biến cố ""4 người được chọn có ít nhất 3 nữ""

Ta có hai trường hợp thuận lợi cho biến cố A như sau:

● TH1: Chọn 3 nữ và 1 nam, có C 8 3 . C 5 1  cách

● TH2: Chọn cả 4 nữ, có C 8 4  cách

Suy ra số phần tử của biến cố A là

Ω A = C 8 3 . C 5 1 + C 8 4 = 350

Vậy xác suất cần tính

P ( A ) = Ω A Ω = 70 143