K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2018

lớn hơn nha bạn

28 tháng 5 2018

đáp án

Trong một hình tứ giác , tổng 2 đg chéo lớn hơn tổng 2 cạnh đối

hok tốt ^.^

28 tháng 9 2017

. a) Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC,OCD và ODA.

b) Chứng minh tổng hai đường chéo lớn hơn nửa chu vi tứ giác sử dụng kết quả của a).

Chứng minh tổng hai đường chéo nhỏ hơn chu vi tứ giác sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác ABC, ADC, ABD và CBD

b) Gọi tứ giác cần chứng minh là ABCD, giao điểm hai đường chéo AC và BD là O

Xét ΔABO có AO+OB>AB

Xét ΔCOD có OC+OD>CD

Xét ΔAOD có OA+OD>AD

Xét ΔBOC có OB+OC>BC

Ta có: AC+BD=AO+OB+OC+OD

\(\Leftrightarrow AC+BD>AB+CD\)

Ta có: AC+BD=AO+OD+OB+OC

\(\Leftrightarrow AC+BD>AD+BC\)

mà AC+BD>AB+CD

nên \(2\left(AC+BD\right)>AB+AD+BC+CD\)

\(\Leftrightarrow AC+BD>\dfrac{AB+AD+BC+CD}{2}\)

Xét ΔABD có BD<AB+AD

Xét ΔCBD có BD<BC+CD

Xét ΔABC có AC<AB+BC

Xét ΔADC có AC<AD+DC

Do đó: BD+BD+AC+AC<2(AB+AD+CD+BC)

\(\Leftrightarrow AC+BD< AB+AD+CD+BC\)(2)

Từ (1) và (2) ta suy ra ĐPCM

AH
Akai Haruma
Giáo viên
8 tháng 6 2021

Theo cách đặt giao của AC, BD là O của bạn Khôi thì phần 1 có thể CM như sau:

Áp dụng công thức BĐT trong tam giác thì:

\(AD< AO+OD\)

\(BC< BO+OC\)

Cộng theo vế 2 BĐT trên:

\(AD+BC< AO+CO+BO+DO=AC+BD\)

AH
Akai Haruma
Giáo viên
8 tháng 6 2021

Còn đoạn "Theo câu 1 thì AC < p và BD < p$ là không có cơ sở em nhé. 

18 tháng 5 2018

Gọi O là giao điểm hai đường chéo AC, BD của tứ giác ABCD.

Trong các tam giác AOB Và COD theo bất đẳng thức tam giác ta lần lượt có:

                OA + OB > AB

                OC + OD > CD.
Cộng theo từng vế hai bất đẳng thức trên ta được:

AB + BD > AB + CD

23 tháng 3 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi O là giao điểm của hai đường chéo AC và BD

* Trong  ∆ OAB, ta có:

OA + OB > AB (bất đẳng thức tam giác) (1)

* Trong ∆ OCD, ta có:

OC + OD > CD (bất đẳng thức tam giác) (2)

Cộng từng vế (1) và (2):

OA + OB + OC + OD > AB + CD

⇒ AC + BD > AB + CD

GH
18 tháng 7 2023

Bài 1:

a) Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC,OCD và ODA.

b) Chứng minh tổng hai đường chéo lớn hơn nửa chu vi tứ giác sử dụng kết quả của a).

Chứng minh tổng hai đường chéo nhỏ hơn chu vi tứ giác sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác ABC, ADC, ABD và CBD

 

Bài 3:

Tứ giác ABCD có góc C + góc D = 90 độ . Chứng minh rằng AC^2 + BD^2 = AB^2 + CD^2 (ảnh 1)

Gọi O là giao điểm AD và BC.

Ta có �^+�⏜=900 nên �^=900

Áp dụng định lí Py – ta – go,

Ta có 

��2=��2+��2.

��2=��2+��2

Nên 

15 tháng 7 2023

Bài 1: loading...

Gọi E là giao điểm của hai đường chéo AC và BD 

Xét tam giác AEB ta có: AE + BE > AB (trong một tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)

Xét tam giác DEC ta có: DE + CE > DC (trong một tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)

Cộng vế với vế ta có: AE + BE + DE + CE > AB + DC 

                                  (AE + CE) + (BE + DE) > AB + DC

                                     AC + BD > AB + DC 

Tương tự ta có AC + BD > AD + BC 

Kết luận: Trong một tứ giác tổng hai đường chéo luôn lớn hơn tổng hai cạnh đối.

Nửa chu vi của tứ giác ABCD là: \(\dfrac{AB+BC+CD+DA}{2}\)

Theo chứng minh trên ta có:

 \(\dfrac{AB+BC+CD+DA}{2}\)\(\dfrac{\left(AB+CD\right)\times2}{2}\) = AB + CD (1)

Vì trong một tam giác tổng hai cạnh bao giờ cũng lớn hơn cạnh còn lại nên ta có:

AB + AD > BD 

AB + BC > AC

BC + CD > BD 

CD + AD > AC 

Cộng vế với vế ta có:

(AB + BC + CD + DA)\(\times\)2 > (BD + AC ) \(\times\) 2

⇒AB + BC + CD + DA > BD + AC  (2)

Kết hợp (1) và (2) ta có:

Tổng hai đường chéo của tứ giác lớn hơn nửa chu vi của tứ giác nhưng nhỏ hơn chu vi của tứ giác