Cho x,y,z >0 và x+y+z=6 Chứng minh \(8^x+8^y+8^z\ge4^{x+1}+4^{y+1}+4^{z+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dấu "=" xảy ra khi x=y=2; ta có : \(\sqrt[3]{8^x.8^x}=\sqrt[3]{64^x}=4^x\)
\(8^x+8^x+8^2\ge3\sqrt[3]{8^x.8^x.8^2}=12.4^x\)
\(8^y+8^y+8^2\ge12.4^y\)
\(8^z+8^z+8^2\ge12.4^z\)
Cộng 3 vế BĐT trên => đpcm
Cách làm của bạn đúng nhưng cộng 3 vế của BĐT bạn chưa thể suy ra ĐPCM được.
Cộng 3 vế:
$\Rightarrow 2(8^x+8^y+8^z)+3.8^2\geq 3(4^{x+1}+4^{y+1}+4^{z+1})(1)$
Mà theo BĐT AM-GM:
$8^x+8^y+8^z\geq 3\sqrt[3]{8^{x}.8^y.8^z}=3\sqrt[3]{8^{x+y+z}}=3.8^2(2)$
Từ $(1);(2)\Rightarrow 3(8^x+8^y+8^z)\geq 2(8^x+8^y+8^z)+3.8^2\geq 3(4^{x+1}+4^{y+1}+4^{z+1})$
$\Rightarrow 8^x+8^y+8^z\geq 4^{x+1}+4^{y+1}+4^{z+1}$
(đpcm)
Ta có : \(8^x+8^x+8^2\ge3\sqrt[3]{8^x.8^x.8^2}=12.4^x\)
\(8^y+8^y+8^2\ge3\sqrt[3]{8^y.8^y.8^2}=12.4^y\)
\(8^z+8^z+8^2\ge3\sqrt[3]{8^z.8^z.8^2}=12.4^z\)
\(8^x+8^y+8^z\ge3\sqrt[3]{8^x.8^y.8^z}=3\sqrt[3]{8^6}=192\)
Cộng các vế , ta được :
\(3\left(8^x+8^y+8^z+64\right)\ge3\left(4^{x+1}+4^{y+1}+4^{z+1}+64\right)\)
hay \(8^x+8^y+8^z\ge4^{x+1}+4^{y+1}+4^{z+1}\)
Sửa đề:
Chứng minh rằng:
\(8x+8y+8z\le4^{x+1}+4^{y+1}+4^{y+2}\)
Ta có:
\(8x+8y+8z=8.\left(x+y+z\right)=8.6=48\)(1)
Áp dụng bất đẳng thức AM-GM ta có:
\(4^{x+1}+4^{y+1}+4^{z+1}\ge3\sqrt[3]{4^{x+1}.4^{y+1}.4^{z+1}}\)
\(\Rightarrow4^{x+1}+4^{y+1}+4^{z+1}\ge3\sqrt[3]{4^{x+y+z+3}}\)
\(\Rightarrow4^{x+1}+4^{y+1}+4^{z+1}\ge3\sqrt[3]{4^{6+3}}\)
\(\Rightarrow4^{x+1}+4^{y+1}+4^{z+1}\ge3\sqrt[3]{4^9}\)
\(\Rightarrow4^{x+1}+4^{y+1}+4^{z+1}\ge3.64\)
\(\Rightarrow4^{x+1}+4^{y+1}+4^{z+1}\ge192\)(2)
Dấu "=" sảy ra khi \(x=y=z=2\).
Từ (1) và (2) suy ra:
\(8x+8y+8z\le4^{x+1}+4^{y+1}+4^{y+2}\)(đpcm)
Chúc bạn học tốt!!!
Dự đoán dấu bằng xảy ra khi \(x=y=z=2\), áp dụng BĐT AM-GM ta có:
\(8^x+8^x+64\ge3\sqrt[3]{8^x\cdot8^x\cdot64}=12\cdot4^x\)
\(8^y+8^y+64\ge3\sqrt[3]{8^y\cdot8^y\cdot64}=12\cdot4^y\)
\(8^z+8^z+64\ge3\sqrt[3]{8^z\cdot8^z\cdot64}=12\cdot4^z\)
Suy ra \(2\left(8^x+8^y+8^z\right)+3\cdot64\ge12\left(4^x+4^y+4^z\right)\left(1\right)\)
Theo giả thiết ta có:
\(8^x+8^y+8^z\ge3\sqrt[3]{8^{x+y+z}}=3\sqrt[3]{8^6}=3\cdot64\left(2\right)\)
Cộng (1) với (2) theo vế ta có:
\(3\left(8^x+8^y+8^z\right)\ge12\left(4^x+4^y+4^z\right)=4^{x+1}+4^{y+1}+4^{z+1}\)
Bài 2:
a) Áp dụng BĐT AM - GM ta có:
\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\) \(\ge2\sqrt{\dfrac{1}{4^2ab}}=\dfrac{2}{4\sqrt{ab}}=\dfrac{1}{2\sqrt{ab}}\)
\(\ge\dfrac{1}{a+b}\) (Đpcm)
b) Trừ 1 vào từng vế của BĐT ta được BĐT tương đương:
\(\left(\frac{x}{2x+y+z}-1\right)+\left(\frac{y}{x+2y+z}-1\right)+\left(\frac{z}{x+y+2z}-1\right)\le\frac{-9}{4}\)
\(\Leftrightarrow-\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le-\frac{9}{4}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)
Áp dụng BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) ta có:
\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)
\(\ge\dfrac{9}{2x+y+z+x+2y+z+x+y+2z}=\dfrac{9}{4\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)
\(\Leftrightarrow\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\le\dfrac{3}{4}\) (Đpcm)
Bài 1:
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT\ge\dfrac{\left(a+b\right)^2}{a-1+b-1}=\dfrac{\left(a+b\right)^2}{a+b-2}\)
Nên cần chứng minh \(\dfrac{\left(a+b\right)^2}{a+b-2}\ge8\)
\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b-2\right)\)
\(\Leftrightarrow a^2+2ab+b^2\ge8a+8b-16\)
\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) luôn đúng
Đặt : \(a=2^x;b=2^y;c=2^z\)
Khi đó : \(a,b,c>0;abc=2^{x+y+z}=64\)
Ta cần c/m : \(a^3+b^3+c^3\ge4\left(a^2+b^2+c^2\right)\)
\(\Rightarrow a^3+32-6a^2=\left(a-4\right)^2\left(a+2\right)\)
Theo đó, ta cần sử dụng giả thiết : \(a>0\), suy ra : \(a^3+32\ge6a^2\)
Thiết lập các bđt tương tự cho b và c và cộng theo vế các bđt tìm được, ta có :
\(a^3+b^3+c^3+96\ge6\left(a^2+b^2+c^2\right)\)
Ta cần c/m thêm : \(6\left(a^2+b^2+c^2\right)\ge4\left(a^2+b^2+c^2\right)+96\)
hay : \(2\left(a^2+b^2+c^2\right)\ge2.3\sqrt[3]{a^2b^2c^2}=6\sqrt[3]{4096}=96\)
\(\Rightarrowđpcm\)
mik làm cách khác,mấy bạn cho điểm nhá!
Sai đề:x+y+z=6
Đặt\(a=2^x,b=2^y,c=2^z\)
\(\Rightarrow abc=2^{x+y+z}=64\)
Áp dụng bất đẳng thức AM-GM,ta được:
\(3\sqrt[3]{abc}\le a+b+c\)
Ta có:\(3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
Hay \(2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
Thật vậy:
Áp dụng bất đẳng thức AM-GM một lần nữa,ta được:
\(a^3+a^3+b^3\ge3a^2b\)
\(a^3+a^3+c^3\ge3a^2c\)
\(a^3+b^3+b^3\ge3b^2a\)
\(a^3+c^3+c^3\ge3c^2a\)
\(b^3+b^3+c^3\ge3b^2c\)
\(b^3+c^3+c^3\ge3c^2b\)
Cộng vế theo vế của các bất đẳng thức,ta được:
\(2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
Dấu "="xẩy ra khi và chỉ khi:\(a=b=c\)
Đặt \(\left(a;b;c\right)=\left(2^x;2^y;2^z\right)\)\(\left(a,b,c>0\right)\)\(\Rightarrow\)\(a+b+c\ge3\sqrt[3]{2^{x+y+z}}=3\sqrt[3]{2^6}=12\)
bđt đề bài \(\Leftrightarrow\)\(a^3+b^3+c^3\ge4\left(a^2+b^2+c^2\right)\)
Dễ dàng chứng minh bđt trên với bđt phụ \(a^3-4a^2\ge16a-64\)\(\Leftrightarrow\)\(\left(a-4\right)^2\left(a+4\right)\ge0\) luon dung
\(\Rightarrow\)\(a^3+b^3+c^3\ge4\left(a^2+b^2+c^2\right)+16\left(a+b+c\right)-192\ge4\left(a^2+b^2+c^2\right)\)
Dấu "=" xảy ra khi \(x=y=z=2\)