cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Gọi I là giao điểm của đường cao BH và CK của tam giác ABC. Chứng minh rằng:
a) Tứ giác AHIK nội tiếp
b) góc CAI = góc BCH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AHIK có:
\(\widehat{AKI}+\widehat{AHI}=90^0+90^0=180^0\)
Nên tứ giác AHIK nội tiếp được trong một đường tròn(đpcm)
b) Vì CI vuông góc với AB(I là trực tâm tam giác ABC) và BD vuông góc với AB(góc nội tiếp chắn nửa đường tròn) nên CI // BD.
VÌ BI vuông góc với AC(I là trực tâm tam giác ABC) và CD vuông góc với AC(góc nội tiếp chắn nửa đường tròn) nên BI // CD.
Xét tứ giác BICD có:
CI // BD; BI // CD
Nên tứ giác BICD là hình bình hành.
Suy ra, BC và DI cắt nhau tại M là trung điểm của mỗi đoạn.
Xét tam giác AID có:
O là trung điểm của AD và M là trung điểm của DI nên OM là đường trung bình của tam giác AID.
Suy ra, AI // OM. Mà AI vuông góc với BC(do I là trực tâm tam giác ABC) nên OM vuông góc với BC(đpcm).
a) Xét tứ giác BNHM có
\(\widehat{BNH}\) và \(\widehat{BMH}\) là hai góc đối
\(\widehat{BNH}+\widehat{BMH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: BNHM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)
nên AEHF là tứ giác nội tiếp
b: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
=>\(\widehat{FEC}+\widehat{ABC}=180^0\)
a: Xét tứ giác BFEC có góc BFC=góc BEC=90 độ
nên BFEC là tứ giác nội tiếp
b: Xét (O) có
ΔBCK nội tiếp
BK là đường kính
Do đó: ΔBCK vuông tại C
=>CK//AH
Xét (O) có
ΔBAK nội tiếp
BK là đường kính
Do đó: ΔBAK vuông tại A
=>AK//CH
Xét tứ giác CHAK có
CH//AK
CK//AH
DO đó: CHAK là hình bình hành