Cho tam giác ABC có AB=AC. Gọi H,I là trung điểm của BC, AC
a. Cho AB=5CM, BC=8 CM.Tính Ah
b.AH cắt BI tại M.CM cắt AB tai D
c. Lấy IM=IE trên tia đối của tia IB. Qua M kẻ đường thẳng song song với BC cắt CE tại K
Chứng minh KE=KC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác IBM và tam giác MNI ta có
MI=MI canh chung
BI= MN (gt)
góc MIB = góc IMN ( 2 góc so letrong và AB//MN)
-> tam giac IBM = tam giac MNI (c-g-c)
-> góc BMI = góc MIN
mà 2 góc o vi tri sole trong
nên IM //AC
MN // AB nên ∠NMC=∠ABC∠NMC=∠ABC (đồng vị)
ΔIBM=ΔNMCΔIBM=ΔNMC(c. g. c) nên ∠IMB=∠ACB.∠IMB=∠ACB.Mà hai góc này ở vị trí đồng vị nên IM // AC.
Mk thấy đề sai hay sao ý ko có đường thẳng nào đi qua B song song vs CD và cắt DM cả
mik thấy cô ghi đè s mik ghi lại y chang chứ mik ko bik j cả. mik đọc cx thấy sai sai cái j á mà ko bik mik đọc đè đúng hay là sai nên mik mới đăng
a: Xét ΔABC và ΔAEF có
AB=AE
\(\widehat{BAC}=\widehat{EAF}\)
AC=AF
Do đó: ΔABC=ΔAEF
Suy ra: \(\widehat{ABC}=\widehat{AEF}\)
mà hai góc này là hai góc ở vị trí so le trong
nên FE//BC
c: Xét tứ giác ABMH có
I là trung điểm của AM
I là trung điểm của BH
Do đó: ABMH là hình bình hành
Suy ra: AH//BC
a) Xét △MIA và △BIH có
MI=BI( giả thiết)
góc MIA =góc BIH(2 góc đối đỉnh)
IA=IH(Vì I là trung điểm của AH)
=> △MIA = △BIH(c-g-c)
=>góc IMA=góc IBH (2 góc tương ứng)
hay góc BMA=góc MBH mà 2 góc này là 2 góc so le trong của đường thẳng MB cắt MA và BH
=>MA//BH
bạn tự làm câu b,c nhé
a)
Xét \(\Delta ABH\)và \(\Delta ACH\)có :
\(AB=AC\left(GT\right)\) (1)
\(BH=CH\)( Vì H là trung điểm của BC ) (2)
\(AH\): Cạnh chung (3)
Từ (1);(2) và (3)
\(\Rightarrow\Delta ABH=\Delta ACH\left(c.c.c\right)\)
=> \(\Rightarrow\widehat{BAH}=\widehat{CAH}\)( Cặp góc tương ứng)
=> AH là đường phân giác
Vì AB = AC (GT)
=> \(\Delta BAC\)cân
Xét \(\Delta BAC\)có :
\(\widehat{BAH}=\widehat{CAH}\)
=> AH là đường cao của tam giác
( vì trong 1 tam giác cân đường phân giác ứng với cạnh đáy đồng thời là đường cao)
\(\Rightarrow AH\perp BC\)
Ta có : H là trung điểm của BC
Mà BC = 8cm
=> HB=HC = 4cm
Áp dụng định lí Py-ta-go cho tam giác vuông BHA có :
\(AB^2=AH^2+BH^2\)
\(\Rightarrow5^2=AH^2+4^2\)
\(\Rightarrow25=AH^2+16\)
\(\Rightarrow AH^2=25-16\)
\(\Rightarrow AH^2=9\)
\(\Rightarrow AH=\sqrt{9}\)
\(\Rightarrow AH=3cm\)
Câu b chứng minh cái gì vậy bạn .
AH=3cm