Cho tam giác ABC có góc B= 60 độ, AB=7 cm, BC= 15 cm. Trên cạnh BC lấy điểm D sao cho góc BAD = 60 độ . Gọi H là trung điểm của BD. Tính độ dài AC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) +Xét tam giác ABD :
ta có góc B = 60* ,góc BAD = 60*
mà góc B + góc BAD + ADB = 180* ( tổng 3 góc )
=> góc ADB = 60*
=> tam giac ABD là tam giác đều ( mỗi góc = 60*) => AB = BD = AD = 7cm
ta có H là trung diem BD => AH là duong trung tuyến,là tia phan giac goc BAD,là duong cao cùa tam giac ABD ( tam giac ABD đều ) => HD = HB = 1/2 BD = 3.5cm
+áp dụng định lí pitago vào tam giác ABH vuong tai H có AB = 7cm,BH = 3.5 cm :
AB^2 = AH^2 + BH^2 => em tự tính AH nhé
+ta có BH + HC = BC => HC = BC - HB = 15 - 3.5 = 11.5cm
+áp dụng dinh li pitago vào tam giac vuong AHC vuong tai H có AH ( lúc nãy tính ) và HC = 11.5cm
AC^2 =AH^2 + HC^2 => tự tính AC
b) bạn tính AB ^2 + AC^2 có = BC ^2 ko? nếu = thì tam giac ABC vuong tai A
a) +Xét tam giác ABD :
ta có góc B = 60* ,góc BAD = 60*
mà góc B + góc BAD + ADB = 180* ( tổng 3 góc )
=> góc ADB = 60*
=> tam giac ABD là tam giác đều ( mỗi góc = 60*) => AB = BD = AD = 7cm
ta có H là trung diem BD => AH là duong trung tuyến,là tia phan giac goc BAD,là duong cao cùa tam giac ABD ( tam giac ABD đều ) => HD = HB = 1/2 BD = 3.5cm
+áp dụng định lí pitago vào tam giác ABH vuong tai H có AB = 7cm,BH = 3.5 cm :
AB^2 = AH^2 + BH^2 => em tự tính AH nhé
+ta có BH + HC = BC => HC = BC - HB = 15 - 3.5 = 11.5cm
+áp dụng dinh li pitago vào tam giac vuong AHC vuong tai H có AH ( lúc nãy tính ) và HC = 11.5cm
AC^2 =AH^2 + HC^2 => AC =13cm
b) AB ^2 + AC^2 có = BC ^2 ko? nếu = thì tam giac ABC vuong tai A
a, BA = BD (gt)
=> Δ ABD cân tại B (đn)
góc ABC = 60 (gt)
=> Δ ABD đều (dấu hiệu)
b) Ta có\(\widehat{A}\)=90 độ và\(\widehat{B}\)=60 độ =>\(\widehat{C}\)=30 độ (1)
Mà BI là phân giác của \(\widehat{B}\)=> \(\widehat{IBC}\)=30 độ(2)
từ (1) và (2) => Δ IBC cân tại I
c) xét 2 tam giác BIA và BID có: \(\widehat{A}\)+\(\widehat{AIB}\)+\(\widehat{IBA}\)+\(\widehat{IBD}\)+\(\widehat{BDI}\)+\(\widehat{DIB}\)=360 độ
=> \(\widehat{AID}\)=120 độ
=> \(\widehat{DIC}\)=60 độ
Xét Δ BIA và Δ CID có:
DI=AI (Δ BIA=Δ BID)
\(\widehat{BIA}\)=\(\widehat{DIC}\)=60 độ
IB=IC(vìΔ IBC cân)
=>ΔBIA=Δ CID(c.g.c)
=> BA=CD mà BA=BD=> BD=DC
=> D là trung điểm của BC
d) vì AB=\(\dfrac{1}{2}\) BC nên BC=12 cm
Áp dụng định lí py-ta-go ta có:
BC2=AB2+AC2
=> AC2=BC2−AB2
=> AC2=144 - 36=108 cm
=> AC= \(\sqrt{108}\)(cm)
vậy BC=12 cm; AC= \(\sqrt{108}\)cm
Sửa đề; BC=12cm
a: Xét ΔABD có \(\widehat{B}=\widehat{BAD}=60^0\)
nên ΔABD đều
=>BD=AB=6cm
=>BH=3cm
b: Ta có: BD+DC=BC
nên DC=BC-BD=12-6=6(cm)
Xét ΔDAC có DA=DC
nên ΔDAC cân tại D
c: Xét ΔABC có
AD là đường trung tuyến
AD=BC/2
Do đó: ΔABC vuông tại A
Xét tam giác ADB có góc ABD = BAD = 60o => tam giác ABD đều => AB = BD = 7 cm
Tam giác ABD có AH nên trung tuyến nên đồng thời là đường cao
Áp dụng ĐL Pi ta go trong tam giác vuông ABH có AH2 = AB2 - BH2 = 72 - 3,52 = 36,75
HC = BC - BH = 15 - 3,5 = 11,5 cm
Áp dụng ĐL Pi ta go trong tam giác vuông AHC có: AC2 = AH2 + HC2 = 36,75 + 11,52 = 169
=> AC = 13 cm
TAm giác ABD có B = BAD = 60 độ
=> tam giác BAD đều
TAm giác ABD đề => AH vừa là t tuyến vùa là đg cao vừa là p/g
=> BAH = 1/2 BAD = 1/2 . 60 = 30 độ ( AH là p/g)
TAm giac ABH vuoong tịa H có BAH = 30 độ => BH = 1/2 BC = 3,5
TAm giác AHB , theo py ta go tính
AH^2 = \(\frac{147}{4}\)
Vì AH là trung tuyến => BH = HD = 3,5 => BD = 2 HB = 7
=> DC = 15 - BD = 15 - 7 = 8
=> HC = HD + DC = 3,5 + 8 = 11,5
TAm giác AHC vuông tại H , theo py ta go :
AC^2 = AH^2+HC^2= 169 => AC = 13 ( hai số trên tuy lẻ nhưng lại ra só cahwnx phết)