K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2018

=\(\left(x^2+2xy+y^2\right)-6\left(x+y\right)+9+\left(y^2-2y+1\right)+2008\)

=\(\left(x+y\right)^2-6\left(x+y\right)+9+\left(y-1\right)^2+2008\)

=\(\left(x+y-3\right)^2+\left(y-1\right)^2+2008\ge2008\)

\(\hept{\begin{cases}\left(y-1\right)^2\ge0\\\left(x+y-3\right)^2\ge0\end{cases}}\)

DẤU BĂNG XẢY RA KHI VÀ CHỈ KHI y=1 và x=2

VẬY GTNN LÀ 2008 TẠI X=2 VÀ Y=1

4 tháng 5 2018

giúp mình với

AH
Akai Haruma
Giáo viên
27 tháng 5 2023

Lời giải:

$P=(x^2+y^2+2xy)+y^2-6x-8y+2028$

$=(x+y)^2-6(x+y)+(y^2-2y)+2028$
$=(x+y)^2-6(x+y)+9+(y^2-2y+1)+2018$

$=(x+y-3)^2+(y-1)^2+2018\geq 0+0+2018=2018$

Vậy $P_{\min}=2018$

Giá trị này đạt tại $x+y-3=y-1=0$

$\Leftrightarrow y=1; x=2$

7 tháng 5 2018

\(x^2+2y^2+2xy-6x-8y+2018\)

\(=x^2+y^2+9+2xy-6x-6y+y^2-2y+1+2008\)

\(=\left(3-x-y\right)^2+\left(y-1\right)^2+2008\)  \(\ge2008\)

Dấu '=' xảy ra   \(\Leftrightarrow\)\(\hept{\begin{cases}3-x-y=0\\y-1=0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x=2\\y=1\end{cases}}\)

Vậy Min P = 2008  <=> x=2; y=1

7 tháng 5 2018

\(p=\left(x^2+2xy+y^2\right)-\left(6x+6y\right)+9+\left(y^2-2y+1\right)+2008\)

\(=\left(x+y\right)^2-6\left(x+y\right)+9+\left(y-1\right)^2+2008\)

\(=\left(x+y-3\right)^2+\left(y-1\right)^2+2008\)\(\ge2008\)với \(\forall x,y\)

Dấu "=" xảy ra khi  y = 1;  x = 2

NV
16 tháng 4 2021

\(B=\left(x^2+y^2+4+2xy-4x-4y\right)+\left(x^2+z^2+1+2xz-2x-2z\right)+\left(y^2-4y+4\right)+4\)

\(B=\left(x+y-2\right)^2+\left(x+z-1\right)^2+\left(y-2\right)^2+4\ge4\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x+y-2=0\\x+z-1=0\\y-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\\z=1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Lời giải:

$x^2+2y^2-2xy+10x-16y+20$
$=(x^2-2xy+y^2)+y^2+10x-16y+20$

$=(x-y)^2+10(x-y)+y^2-6y+20$

$=(x-y)^2+10(x-y)+25+(y^2-6y+9)-14$

$=(x-y+5)^2+(y-3)^2-14$

$\geq -14$

Vậy biểu thức có min $=-14$

Giá trị này đạt tại $x-y+5=y-3=0$

$\Leftrightarrow (x,y)=(-2,3)$

 

15 tháng 5 2018

Giải:

\(P=x^2+2y^2+2xy-6x-8y+2018\)

\(\Leftrightarrow P=\left(x^2+y^2+9+2xy-6x-6x\right)+\left(y^2-2y+1\right)+2008\)

\(\Leftrightarrow P=\left(x+y-3\right)^2+\left(y-1\right)^2+2008\)

\(\left\{{}\begin{matrix}\left(x+y-3\right)^2\ge0;\forall x,y\\\left(y-1\right)^2\ge0;\forall y\end{matrix}\right.\)

\(\Leftrightarrow\left(x+y-3\right)^2+\left(y-1\right)^2+2008\ge2008;\forall x,y\)

Hay \(P\ge2008;\forall x,y\)

Vậy ...

15 tháng 5 2018

\(P=x^2+2y^2+2xy-6x-8y+2018\)

<=> \(P=\left(x^2+2xy+y^2\right)-\left(6x+6y\right)+9+\left(y^2-2y+1\right)+2008\)

<=> P=(x+y)2-6(x+y) +9 +(y-1)2 +2008

<=> P=(x+y-3)2+(y-1)2+2008

=> Min P= 2008 dấu = xảy ra khi y=1;x=2

16 tháng 11 2021

\(F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)

Dấu \("="\Leftrightarrow x=y=1\)

Vậy \(F_{min}=2021\)

16 tháng 11 2021

\(\Rightarrow F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ \Rightarrow F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

19 tháng 12 2020

A= -x2+2x+3

=>A= -(x2-2x+3)

=>A= -(x2-2.x.1+1+3-1)

=>A=-[(x-1)2+2]

=>A= -(x+1)2-2

Vì -(x+1)≤0=> A≤-2

Dấu "=" xảy ra khi

-(x+1)2=0 => x=-1

Vây A lớn nhất= -2 khi x= -1

19 tháng 12 2020

B=x2-2x+4y2-4y+8

=> B= (x2-2x+1)+(4y2-4y+1)+6

=> B=(x-1)2+(2y+1)2+6

=> B lớn nhất=6 khi x=1 và y=-1/2

20 tháng 9 2021

\(P=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+\left(y^2-8y+16\right)-16\\ P=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2-16\\ P=\left(x-y+1\right)^2+\left(y-4\right)^2-16\ge-16\)

\(P_{min}=-16\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

20 tháng 9 2021

\(P=\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8y+16\right)-16\\ =\left(x-y+1\right)^2+\left(y-4\right)^2-16\\ \ge-16\)

dấu = xảy ra khi và chỉ khi y=4,x=3