tìm GTNN của :
x2+2y2+2xy-6x-8y+2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$P=(x^2+y^2+2xy)+y^2-6x-8y+2028$
$=(x+y)^2-6(x+y)+(y^2-2y)+2028$
$=(x+y)^2-6(x+y)+9+(y^2-2y+1)+2018$
$=(x+y-3)^2+(y-1)^2+2018\geq 0+0+2018=2018$
Vậy $P_{\min}=2018$
Giá trị này đạt tại $x+y-3=y-1=0$
$\Leftrightarrow y=1; x=2$
\(x^2+2y^2+2xy-6x-8y+2018\)
\(=x^2+y^2+9+2xy-6x-6y+y^2-2y+1+2008\)
\(=\left(3-x-y\right)^2+\left(y-1\right)^2+2008\) \(\ge2008\)
Dấu '=' xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}3-x-y=0\\y-1=0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy Min P = 2008 <=> x=2; y=1
\(B=\left(x^2+y^2+4+2xy-4x-4y\right)+\left(x^2+z^2+1+2xz-2x-2z\right)+\left(y^2-4y+4\right)+4\)
\(B=\left(x+y-2\right)^2+\left(x+z-1\right)^2+\left(y-2\right)^2+4\ge4\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x+y-2=0\\x+z-1=0\\y-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\\z=1\end{matrix}\right.\)
Lời giải:
$x^2+2y^2-2xy+10x-16y+20$
$=(x^2-2xy+y^2)+y^2+10x-16y+20$
$=(x-y)^2+10(x-y)+y^2-6y+20$
$=(x-y)^2+10(x-y)+25+(y^2-6y+9)-14$
$=(x-y+5)^2+(y-3)^2-14$
$\geq -14$
Vậy biểu thức có min $=-14$
Giá trị này đạt tại $x-y+5=y-3=0$
$\Leftrightarrow (x,y)=(-2,3)$
Giải:
\(P=x^2+2y^2+2xy-6x-8y+2018\)
\(\Leftrightarrow P=\left(x^2+y^2+9+2xy-6x-6x\right)+\left(y^2-2y+1\right)+2008\)
\(\Leftrightarrow P=\left(x+y-3\right)^2+\left(y-1\right)^2+2008\)
Vì \(\left\{{}\begin{matrix}\left(x+y-3\right)^2\ge0;\forall x,y\\\left(y-1\right)^2\ge0;\forall y\end{matrix}\right.\)
\(\Leftrightarrow\left(x+y-3\right)^2+\left(y-1\right)^2+2008\ge2008;\forall x,y\)
Hay \(P\ge2008;\forall x,y\)
Vậy ...
\(P=x^2+2y^2+2xy-6x-8y+2018\)
<=> \(P=\left(x^2+2xy+y^2\right)-\left(6x+6y\right)+9+\left(y^2-2y+1\right)+2008\)
<=> P=(x+y)2-6(x+y) +9 +(y-1)2 +2008
<=> P=(x+y-3)2+(y-1)2+2008
=> Min P= 2008 dấu = xảy ra khi y=1;x=2
\(F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)
Dấu \("="\Leftrightarrow x=y=1\)
Vậy \(F_{min}=2021\)
\(\Rightarrow F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ \Rightarrow F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
A= -x2+2x+3
=>A= -(x2-2x+3)
=>A= -(x2-2.x.1+1+3-1)
=>A=-[(x-1)2+2]
=>A= -(x+1)2-2
Vì -(x+1)2 ≤0=> A≤-2
Dấu "=" xảy ra khi
-(x+1)2=0 => x=-1
Vây A lớn nhất= -2 khi x= -1
B=x2-2x+4y2-4y+8
=> B= (x2-2x+1)+(4y2-4y+1)+6
=> B=(x-1)2+(2y+1)2+6
=> B lớn nhất=6 khi x=1 và y=-1/2
\(P=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+\left(y^2-8y+16\right)-16\\ P=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2-16\\ P=\left(x-y+1\right)^2+\left(y-4\right)^2-16\ge-16\)
\(P_{min}=-16\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
\(P=\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8y+16\right)-16\\ =\left(x-y+1\right)^2+\left(y-4\right)^2-16\\ \ge-16\)
dấu = xảy ra khi và chỉ khi y=4,x=3
=\(\left(x^2+2xy+y^2\right)-6\left(x+y\right)+9+\left(y^2-2y+1\right)+2008\)
=\(\left(x+y\right)^2-6\left(x+y\right)+9+\left(y-1\right)^2+2008\)
=\(\left(x+y-3\right)^2+\left(y-1\right)^2+2008\ge2008\)
VÌ\(\hept{\begin{cases}\left(y-1\right)^2\ge0\\\left(x+y-3\right)^2\ge0\end{cases}}\)
DẤU BĂNG XẢY RA KHI VÀ CHỈ KHI y=1 và x=2
VẬY GTNN LÀ 2008 TẠI X=2 VÀ Y=1
giúp mình với