Cho ΔABC cân tại A và góc A nhỏ hơn 90 độ. CD là tia phân giác của góc ACB ( D∈AB ). Từ D kẻ DE⊥AC tại E, DF⊥BC tại F. Đường thẳng DE cắt BC tại K, đường thẳng DF cắt AC tại H. a) CM: ΔECD = ΔFCD b) CM: ΔECD = ΔFCH c) Gọi M là trung điểm của HK. CM: 3 điểm C,D,M thẳng hàng
Ý a, b chắc em tự làm được (với kiểm tra lại câu b nhé)
c, Vì tgiac ECD = tgiac FCD
=> DE=DF
- Xét tgiac HKC có 2 đường cao HF và KE giao nhau tại D
=> D là trực tâm và CD là đường cao (t.c)
=> CD \(\perp\)HK (1)
- Theo trường hợp g-c-g
=> tgiac KDF = tgiac HDE
=> DK=DH
=> tgiac DHK cân tại D
mà DM là trung tuyến do M là trung điểm HK
=> DM \(\perp\) HK (2)
- Từ (1)(2) => C, D, M thẳng hàng (đpcm)
Dạ em cảm ơn ak