K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2022

a. xét tam giác vuông ADE và tam giác vuông ADF,có :

AB = AC ( ABC cân )

Góc EAD = góc FAD ( gt )

AD : cạnh chung

Vậy  tam giác vuông ADE = tam giác vuông ADF ( c.g.c )

=> DE = DF ( 2 cạnh tương ứng )

b. xét tam giác vuông BDE và tam giác vuông CDF, có:

góc B = góc C ( ABC cân )

BD = CD ( AD là đường phân giác cũng là đường trung tuyến trong tam giác cân ABC )

Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền. góc nhọn)

c. ta có: AD là đường phân giác trong tam giác cân ABC cũng là đường trung trực của BC

 

a: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

\(\widehat{EAD}=\widehat{FAD}\)

Do đó: ΔAED=ΔAFD

SUy ra: DE=DF

b: Xét ΔBDE vuông tại E và ΔCDF vuông tại F có 

BD=CD

DE=DF

Do đó: ΔBDE=ΔCDF

c: Ta có: ΔABC cân tại A

mà AD là phân giác

nên AD là đường trung trực của BC

28 tháng 2 2019

a, xet tam giac ABD va tam giac ACD co : AD chung

AB = AC do tam giac ABC can tai A (gt)

goc BAD = goc CAD do AD la phan giac cua goc A (gt)

=> tam giac ABD = tam giac ACD (c - g - c)

=> BD = CD (dn)

xet tam giac BED va tam giac CFD co : goc BED = goc CFD = 90 do ...

goc B = goc C do tam giac ABC can tai  A(gt)

=> tam giac BED = tam giac CFD (ch - gn)

=> DE = DF (dn)

b, cm o cau a

c, tam giac ABD = tam giac ACD (cau a)

=> goc ADC = goc ADB (dn)

goc ADC + goc ADB = 180 (kb)

=> goc ADC = 90

co DB = DC (cau a)

=> AD la trung truc cua BC (dn)

25 tháng 3 2022

dn là j ă bạn?

 

 

 

19 tháng 12 2021

a: Xét ΔADB và ΔADC có 

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔADB=ΔADC

4 tháng 3 2021

Tự vẽ hình nha:v

a) Xét \(\Delta AED\) và \(\Delta AFD:\)

AD: cạnh chung

\(\widehat{EAD}=\widehat{FAD}\) (AD là tia phân giác góc A)

\(\widehat{AED}=\widehat{AFD}=90^o\)

=> \(\Delta AED=\Delta AFD\left(ch.gn\right)\)

=> DE=DF (2 cạnh t/ứ)

b) Vì tam giác ABC có AB=AC => Tam giác ABC cân tại A

=> \(\widehat{ABC}=\widehat{ACB}\)

Xét ∆BED và ∆CFD:

DE=DF(cm câu a)

\(\widehat{BED}=\widehat{CFD}=90^o\)

\(\widehat{EBD}=\widehat{FCD}\left(cmt\right)\)

=> ∆BED=∆CFD(cgv.gn)

c. Trong tam giác cân, đường phân giác đồng thời là đường cao

=> AD vuông góc với BC

Mà BD=DC(∆BED=∆CFD) 

=> AD là trung trực của BC

a) Xét ΔABD và ΔACD có

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))

AD chung

Do đó: ΔABD=ΔACD(c-g-c)

Suy ra: BD=CD(hai cạnh tương ứng)

Xét ΔEDB vuông tại E và ΔFDC vuông tại F có 

DB=DC(cmt)

\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

Do đó: ΔEDB=ΔFDC(cạnh huyền-góc nhọn)

Suy ra: DE=DF(hai cạnh tương ứng)

29 tháng 12 2021

a: Xét ΔABD và ΔACD có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔABD=ΔACD

17 tháng 2 2022

Xét tam giác ABC cân tại A có:

AD là phân giác của góc BAC (gt).

\(\Rightarrow\) AD là đường trung trực của BC (Tính chất tam giác cân).

a: Xét ΔADB và ΔADC có

AB=AC
góc BAD=góc CAD

AD chung

=>ΔADB=ΔADC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

=>ΔAED=ΔAFD
=>AE=AF và DE=DF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

11 tháng 3 2020

A E F B C G D

Vì tam giác ABC cân tại A suy ra AB= AC, góc B= góc C ( T/c tam giác cân)

Xét tam giác AED và tam giác AFD

có góc AED=góc AFD = 900

góc BAD = góc CAD (GT)

AD chung

suy ra tam giác AED = tam giác AFD (cạnh huyền-góc nhọn)

suy ra DE = DF suy ra D thuộc đường trung trục của EF (1)

Mà AB=AC suy ra A thuộc đường TT của EF (2)

từ (1) và (2) suy ra AD là đường trung trực của EF

b) Xét tam giác  ABD và tam giácACD

có AD chung

góc BAD = góc CAD (GT)

AB=AC (GT)

suy ra tam giác  ABD = tam giác ACD (c.g.c)

suy ra BD = DC (hai cạnh tương ứng)

Xét tam giác EDB và tam giác GDC

có BD=DC (CMT)

góc EDB = góc CDG (đối đỉnh)

ED = DG (GT)

suy ra tam giác EDB =  tam giác GDC (c.g.c)

suy ra góc DEB = góc CGD

mà góc DEB = 900

suy ra góc CGD = 900

suy ra tam giác EGC vuông tại G

11 tháng 3 2020

A B D E F C G

Vì tam giác ABC cân tại A suy ra AB= AC, góc B= góc C ( T/c tam giác cân)

Xét tam giác AED và tam giác AFD

có góc AED=góc AFD = 900

góc BAD = góc CAD (GT)

AD chung

suy ra tam giác AED = tam giác AFD (cạnh huyền-góc nhọn)

suy ra DE = DF suy ra D thuộc đường trung trục của EF (1)

Mà AB=AC suy ra A thuộc đường TT của EF (2)

từ (1) và (2) suy ra AD là đường trung trực của EF

b) Xét tam giác  ABD và tam giácACD

có AD chung

góc BAD = góc CAD (GT)

AB=AC (GT)

suy ra tam giác  ABD = tam giác ACD (c.g.c)

suy ra BD = DC (hai cạnh tương ứng)

Xét tam giác EDB và tam giác GDC

có BD=DC (CMT)

góc EDB = góc CDG (đối đỉnh)

ED = DG (GT)

suy ra tam giác EDB =  tam giác GDC (c.g.c)

suy ra góc DEB = góc CGD

mà góc DEB = 900

suy ra góc CGD = 900

suy ra tam giác EGC vuông tại G