Cho đường tròn tâm O, đường kính AB=2R, C là điểm trên (O) sao cho cung CA lớn hơn cung CB. Kẻ dây CD vuông góc với AD tại H, E là 1 điểm bất kì thuộc cung AC, EB cắt CD tại K.
a) Chứng minh tứ giác AHKE là tứ giác nội tiếp
b) Chứng minh tam giác BCK đồng dạng với tam giác BEC. Từ đó suy ra BK.BE = CB bình phương
c) Giả sử Oh = R phần 3. Xác định vị trí của E trên cung AC để đường tròn ngoại tiếp tam giác EHK có bán kính lớn nhất