*Cho a,b,c là 3 cạnh tam giác có chu vi bằng 4. Chứng minh:*
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với mọi x,y>0
Ta có: \(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{c}\)
Tương tự \(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\)
\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)
\(\Rightarrow2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Ta chứng minh BĐT \(\frac{â^3+b^3+c^3}{3}\ge\left(\frac{a+b+c}{3}\right)^3\)^3
(do nó rất dài nên mình sẽ bỏ phần này, thông cảm)(Đẳng thức xảy ra khi a=b=c)
Áp dụng ta có \(\frac{a^3+b^3+c^3}{3}\ge\left(\frac{1}{3}\right)^3=\frac{1}{27}\)
\(\Rightarrow a^3+b^3+c^3\ge\frac{1}{9}\)(Đẳng thức xảy ra khi a=b=c và a + b + c =1 => a = b = c = 1/3 )
Mặt khác, ta có \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow1\ge27abc\Rightarrow abc\ge\frac{1}{27}\)=> \(3abc\ge\frac{1}{9}\)(Đẳng thức xảy ra khi a = b = c = 1/3)
=> \(a^3+b^3+c^3+3abc\ge\frac{2}{9}\)(Đẳng thức khi a = b = c = 1/3)
Mình mới nghĩ được vậy thôi bạn à!
Lời giải
Theo đề bài thì \(p=\frac{a+b+c}{2}\Rightarrow p-a=\frac{a+b+c}{2}-a=\frac{b+c-a}{2}\)
Tương tự: \(p-b=\frac{c+a-b}{2};p-c=\frac{a+b-c}{2}\)
Ta cần c/m: \(\frac{2}{b+c-a}+\frac{2}{c+a-b}+\frac{2}{a+b-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Ta có: \(VT=\left(\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)+\left(\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)+\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}\right)\)
\(\ge\frac{4}{2c}+\frac{4}{2a}+\frac{4}{2b}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{\left(đpcm\right)}\)
Ta có:\(p-a=\frac{a+b+c}{2}-a=\frac{b+c-a}{2}\Leftrightarrow\frac{1}{p-a}=\frac{2}{b+c-a}\)
Tương tự ta có:
\(\frac{1}{p-b}=\frac{2}{a+c-b}\)
\(\frac{1}{p-c}=\frac{2}{a+b-c}\)
\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}=2\left(\frac{1}{a+c-b}+\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng engel ta có:
\(\frac{1}{b+c-a}=\frac{\left(1+1-1\right)^2}{b+c-a}\ge\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\)
Tương tự,ta có:
\(\frac{1}{a+b-c}\ge\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\)
\(\frac{1}{a+c-b}\ge\frac{1}{a}+\frac{1}{c}-\frac{1}{b}\)
Cộng vế theo vế ta được:
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{đpcm}\)
a^2+b^2+c^2=(a+b+c)^2-2ab-2bc-2ca=1-2ab-2bc-2ca
((a^2+b^2+c^2)-1)/2abc=(1-2ab-2bc-2ca-1)/abc=-(1/a+1/b+1/c)
T=4/a+b +4/b+c +4/c+a<=1/a+1/b+1/b+1/c+1/c+1/a-1/a-1/b-1/c=1/a+1/b+1/c<=9
Dấu = khi a=b=c=1/3
ta sử dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)(cái này bạn có thể dễ dàng chúng minh )
ta có
\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-\left(a+b\right)}=\frac{4}{c}\)(1)
tương tự ta có
\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\) (2)
\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)(3)
cộng theo vế của bđt (1);(2);(3) ta có
\(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
hay \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Áp dụng bđt \(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{x+y+z}\)
được : \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{\left(1+1+1\right)^2}{a+b-c+b+c-a+c+a-b}\)
\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
công thức
\(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{a+y+z}\)
chứng minh thế nào
vì a b c là 3 cạnh của 1 tam giác nên a b c dương \(\Rightarrow\)\(\frac{a^2}{b+c}\)\(\frac{b^2}{c+a}\)\(\frac{c^2}{a+b}\)dương
chu vi của tam giác có cạnh a b c là 4 nên a+b+c=4
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}>=\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}\)(bđt cauchy schwat dạng engel)
\(=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{4^2}{4\cdot2}=\frac{16}{8}=2\)
dấu = xảy ra khi \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)\(\Rightarrow a=b=c=\frac{4}{3}\)
vậy \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}>=2\)dấu = xảy ra khi a=b=c=\(\frac{4}{3}\)
cảm ơn bạn nha