K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2018

vì a b c là 3 cạnh của 1 tam giác nên a b c dương \(\Rightarrow\)\(\frac{a^2}{b+c}\)\(\frac{b^2}{c+a}\)\(\frac{c^2}{a+b}\)dương 

chu vi của tam giác có cạnh a b c là 4 nên a+b+c=4

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}>=\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}\)(bđt cauchy schwat dạng engel)

\(=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{4^2}{4\cdot2}=\frac{16}{8}=2\)

dấu = xảy ra khi \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)\(\Rightarrow a=b=c=\frac{4}{3}\)

vậy \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}>=2\)dấu = xảy ra khi a=b=c=\(\frac{4}{3}\)

3 tháng 5 2018

cảm ơn bạn nha

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với mọi x,y>0 

Ta có:      \(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{c}\)

Tương tự \(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\)

               \(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)

\(\Rightarrow2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

2 tháng 4 2019

Ta chứng minh BĐT \(\frac{â^3+b^3+c^3}{3}\ge\left(\frac{a+b+c}{3}\right)^3\)^3

(do nó rất dài nên mình sẽ bỏ phần này, thông cảm)(Đẳng thức xảy ra khi a=b=c)

Áp dụng ta có \(\frac{a^3+b^3+c^3}{3}\ge\left(\frac{1}{3}\right)^3=\frac{1}{27}\)

\(\Rightarrow a^3+b^3+c^3\ge\frac{1}{9}\)(Đẳng thức xảy ra khi a=b=c và a + b + c =1 => a = b = c = 1/3 )

Mặt khác, ta có \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow1\ge27abc\Rightarrow abc\ge\frac{1}{27}\)=>  \(3abc\ge\frac{1}{9}\)(Đẳng thức xảy ra khi a = b = c = 1/3)

=> \(a^3+b^3+c^3+3abc\ge\frac{2}{9}\)(Đẳng thức khi a = b = c = 1/3)

Mình mới nghĩ được vậy thôi bạn à!

23 tháng 4 2019

                                  Lời giải

Theo đề bài thì \(p=\frac{a+b+c}{2}\Rightarrow p-a=\frac{a+b+c}{2}-a=\frac{b+c-a}{2}\)

Tương tự: \(p-b=\frac{c+a-b}{2};p-c=\frac{a+b-c}{2}\)

Ta cần c/m: \(\frac{2}{b+c-a}+\frac{2}{c+a-b}+\frac{2}{a+b-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Ta có: \(VT=\left(\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)+\left(\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)+\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}\right)\)

\(\ge\frac{4}{2c}+\frac{4}{2a}+\frac{4}{2b}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{\left(đpcm\right)}\)

24 tháng 4 2019

Ta có:\(p-a=\frac{a+b+c}{2}-a=\frac{b+c-a}{2}\Leftrightarrow\frac{1}{p-a}=\frac{2}{b+c-a}\)

Tương tự ta có:

\(\frac{1}{p-b}=\frac{2}{a+c-b}\)

\(\frac{1}{p-c}=\frac{2}{a+b-c}\)

\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}=2\left(\frac{1}{a+c-b}+\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)\)

Áp dụng bất đẳng thức Cauchy-Schwarz dạng engel ta có:

\(\frac{1}{b+c-a}=\frac{\left(1+1-1\right)^2}{b+c-a}\ge\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\)

Tương tự,ta có:

\(\frac{1}{a+b-c}\ge\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\)

\(\frac{1}{a+c-b}\ge\frac{1}{a}+\frac{1}{c}-\frac{1}{b}\)

Cộng vế theo vế ta được:

\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{đpcm}\)

6 tháng 3 2016

áp dụng BĐT 1/x+1/y>=4/x+y ấy

11 tháng 8 2016

Áp dụng bđt \(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{x+y+z}\)

được : \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{\left(1+1+1\right)^2}{a+b-c+b+c-a+c+a-b}\)

\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)

11 tháng 8 2016

công thức 

\(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{a+y+z}\) 

chứng minh thế nào

 

 

3 tháng 11 2017

Đặt b+c-a=x

c+a-b=y                           (x,y,z>0)

a+b-c=z

rồi rút a,b,c theo x,y,z.

AD Svacso 

18 tháng 5 2020

Đặt: x = b + c - a 

y = c + a - b 

z = a + b - c 

=> x + y + z = a + b + c = 2 

=> \(a=\frac{y+z}{2}\)\(b=\frac{x+z}{2}\)\(c=\frac{x+y}{2}\)

=> \(S=\frac{1}{2}\left(\frac{y+z}{x}+\frac{4z+4x}{y}+\frac{9x+9y}{z}\right)\)

\(=\frac{1}{2}\left(\frac{2-x}{x}+\frac{8-4y}{y}+\frac{18-9z}{z}\right)\)

\(=\frac{1}{x}+\frac{4}{y}+\frac{9}{z}-7\ge\frac{\left(1+2+3\right)^2}{x+y+z}-7=11\)

Dấu "=" xảy ra <=> \(\frac{1}{x}=\frac{2}{y}=\frac{3}{z}=\frac{1+2+3}{x+y+z}=3\)

=> x = 1/3; y = 2/3; z = 1 

=> a = 5/6; b = 2/3; c = 1/2

Vậy min S = 11 đạt tại  a = 5/6; b = 2/3 ; c = 1/2

Link https://lazi.vn/edu/exercise/cho-a-b-c-la-do-dai-3-canh-cua-mot-tam-giac-va-p-la-nua-chu-vi-chung-minh-1-p-a-1-p-b-1-p-c-21-a-a-b-1-c

12 tháng 3 2018

2.

a, Có : (a+b+c).(1/a+1/b+1/c)

>= \(3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)

   = 9

=> ĐPCM

Dấu "=" xảy ra <=> a=b=c > 0

12 tháng 3 2018

2.

b, Xét : 2(a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9 ( theo bđt ở câu a đã c/m )

<=> (a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9/2

<=> a/b+c + b/c+a + c/a+b + 3 >= 9/2

<=> a/b+c + b/c+a + c/a+b >= 9/3 - 3 = 3/2

=> ĐPCM

Dấu "=" xảy ra <=> a=b=c > 0

5 tháng 1 2017

Bài 1 Câu hỏi của Trịnh Xuân Diện - Toán lớp 8 - Học toán với OnlineMath y hệt rút 2 ở tử ở VT chia cho VP là thành đề này