Cho 1 đường thẳng cắt 2 đường thẳng CMR:
a) 2tia phân giác của 2 góc so le trong song song với nhau ?
b) 2 tia phân giác của 2 góc đồng vị song song với nhau?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài, \(xx'//yy'\) gọi giao điểm của đường thẳng d vs x và y lần lượt là A và B.
Vì Aa là tia phân giáo của \(\widehat{xAB}\)
\(\Rightarrow\widehat{A_1}=\widehat{A_2}=\frac{\widehat{xAB}}{2}=\frac{1}{2}\widehat{xAB}\)
Vì Bb là tia phân giác của \(\widehat{ABy'}\)
\(\Rightarrow\widehat{B_1}=\widehat{B_2}=\frac{\widehat{ABy}'}{2}=\frac{1}{2}\widehat{ABy'}\)
mà \(\widehat{xAB}=\widehat{ABy'}\) (2 góc so le trong)
\(\Rightarrow\widehat{A_1}=\widehat{A_2}=\widehat{B_1}=\widehat{B_2}\)
\(\Rightarrow Aa//Bb\left(dpcm\right)\)
hok tốt!
Ta có hình vẽ:
Giả thiết: aa' // bb'
cc' cắt aa' và bb' lần lượt tại A và B
Am là phân giác của góc BAa; Bn là phân giác của góc ABb'
Kết luận: Am // Bn
Giải:
Vì Am là phân giác của BAa => \(BAm=\frac{BAa}{2}\) (1)
Bn là phân giác của ABb' =>\(ABn=\frac{ABb'}{2}\)(2)
Từ (1) và (2) lại có: BAa = ABb' (so le trong)
=> BAm = ABn
Mà BAm và ABn là 2 góc so le trong
=> Am // Bn (đpcm)
giải:
giả sử đường thẳng d căt 2 đường thẳng song song tại A, B, đường phân giác góc A và B cắt nhau tại M
2 góc trong cùng phía có tổng = 180 độ
=> (MBA + MAB) = 180/2 = 90 độ
=> BMA = 180 - MAB - MBA = 180 - 90 = 90 độ
hay AM vuông góc với BM
Có : góc 1 = góc 2 ( so le trong )
=> 1/2 góc 1 = 1/2 góc 2
=> góc a = góc b
Mà 2 góc ở vị trí so le trong
=> 2 tia phân giác của 2 góc so le trong bằng nhau ( đpcm )
Không hiểu gì thì ib ạ ;33
giả sử a//b cắt c tại 2 điểm A và B, d là phân giác góc A, e là phân giác góc B
=> gócA = gócB (so le trong)