K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2019

Để học tốt Toán 7 | Giải toán lớp 7

​Xét tam giác ABC có AI là đường trung trực vừa là đường phân giác

vì AI là đường trung trực nên AI vuông góc với BC và I là trung điểm cuả BC

xét 2 tam giác vuông ABI và tam giác vuông ACI có;

IA chung

góc BAI=gócCAI (do AI là phân giác)

do đó tam giác BAI =tam giác CAI

suy ra AB=AC (2 cạnh tương ứng)

suy ra tam giác ABC cân tại A (định nghĩa tam giác cân)

13 tháng 5 2016

Dựa vào sách giáo khoa ý

13 tháng 5 2016

A B C D Cả 4 câu đều là 1 hình như thế này, chỉ có kí hiệu khác nhau, bạn tự dựa vào nội dung câu hỏi mà kí hiệu lên hình nhé.

Câu 1:

Xét tam giác ABD và tam giác ACD:

ADB= ADC =90o

AD chung

DB= DC

=> tam giác ABD = tam giác ACD (2 cạnh góc vuông)

=> góc B = góc C (2 góc tương ứng)

Vậy tam giác ABC cân

Câu 2:

Chứng minh y chang câu 1

Câu 3:

Xét tam giác ABD và tam giác ACD:

ADB= ADC =90o

AD chung

BAD = CAD

=> tam giác ABD = tam giác ACD (cạnh góc vuông_ góc nhọn)

=> góc B = góc C (2 góc tương ứng)

Vậy tam giác ABC cân

Câu 4:

Chứng minh giống hệt câu 3.

5 tháng 6 2021

- Giả sử AD vừa là đường trung tuyến, vừa là đường phân giác của tam giác ABC.

Ta cần chứng minh ∆ABC cân tại A.

Kéo dài AD một đoạn DA1 sao cho DA1 = AD.

- ∆ADB và ∆A1DC có

AD = DA1 (cách vẽ)

BD = CD (do D là trung điểm BC)

Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ∆ADB = ∆A1DC (c.g.c)

⇒ Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7 (hai góc tương ứng), AB = A1C (hai cạnh tương ứng) (1)

Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ∆ACA1 cân tại C ⇒ AC = A1C (2)

Từ (1) và (2) ⇒ AB = AC.

Vậy ∆ABC cân tại A

Tức là: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là một tam giác cân.

HOK T ~

5 tháng 6 2021

A B C H

Xét tam giác ABH và tam giác ACH có 

\(\hept{\begin{cases}\widehat{AHB}=\widehat{AHC}\left(=90^{\text{o}}\right)\\BH=CH\\AH\text{ chung }\end{cases}\Rightarrow\Delta ABH=\Delta ACH\left(c-g-c\right)}\)

=> AB = AC (cạnh tương ứng) 

=> Tam giác ABC cân tại A 

10 tháng 4 2018

Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

- Giả sử AD vừa là đường trung tuyến, vừa là đường phân giác của tam giác ABC.

Ta cần chứng minh ∆ABC cân tại A.

Kéo dài AD một đoạn DA1 sao cho DA1 = AD.

- ∆ADB và ∆A1DC có

AD = DA1 (cách vẽ)

BD = CD (do D là trung điểm BC)

Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ∆ADB = ∆A1DC (c.g.c)

⇒ Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7 (hai góc tương ứng), AB = A1C (hai cạnh tương ứng) (1)

Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ∆ACA1 cân tại C ⇒ AC = A1C (2)

Từ (1) và (2) ⇒ AB = AC.

Vậy ∆ABC cân tại A

Tức là: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là một tam giác cân.

 

25 tháng 3 2021

- Giả sử AD vừa là đường trung tuyến, vừa là đường phân giác của tam giác ABC.

Ta cần chứng minh ∆ABC cân tại A.

Kéo dài AD một đoạn DA1 sao cho DA1 = AD.

- ∆ADB và ∆A1DC có

AD = DA1 (cách vẽ)

BD = CD (do D là trung điểm BC)

Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ∆ADB = ∆A1DC (c.g.c)

⇒ Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7 (hai góc tương ứng), AB = A1C (hai cạnh tương ứng) (1)

Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ∆ACA1 cân tại C ⇒ AC = A1C (2)

Từ (1) và (2) ⇒ AB = AC.

Vậy ∆ABC cân tại A

Tức là: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là một tam giác cân.

13 tháng 3 2016

Chỉ cần vẽ hình là thấy ngay định lí đó mà

2 tháng 6 2019

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Kẻ MH ⊥ AB, MK ⊥ AC

Vì AM là tia phân giác của ∠(BAC) nên MH = MK (tính chất tia phân giác)

Xét hai tam giác MHB và MKC, ta có:

∠(MHB) = ∠(MKC) = 90º

MH = MK (chứng minh trên)

MB = MC (gt)

Suy ra: ΔMHB = ΔMKC (cạnh huyền, cạnh góc vuông)

Suy ra: ∠B = ∠C (hai góc tương ứng)

Vậy tam giác ABC cân tại A.

26 tháng 4 2016
 
  •  
  • MÔN ĐẠI CƯƠNG
  • ÔN THI ĐẠI HỌC
  • TOÁN HỌC
  • NGỮ VĂN
  • ANH VĂN
  • VẬT LÝ
  • HÓA HỌC
  • SINH HỌC
  • LỊCH SỬ
  • ĐỊA LÝ
  • TRUYỆN CỔ TÍCH
  • Sóng - Xuân Quỳnh hot
  • Đàn ghi ta của Lor-ca - Thanh Thảo hot
TOÁN HỌCToán lớp 7

Bài 42 trang 73 sgk toán lớp 7- tập 2

Cập nhật lúc: 08/07/2014 17:21 pm Danh mục: Toán lớp 7

  Chứng minh định lí
  • Bài 38 trang 73 sgk toán lớp 7- tập 2
  • Bài 40 trang 73 sgk toán lớp 7- tập 2
  • Bài 36 trang 72 sgk toán lớp 7- tập 2
  • Bài 42 trang 73 sgk toán lớp 7- tập 2
  • Bài 39 trang 73 sgk toán lớp 7- tập 2

Xem thêm: Tính chất ba đường phân giác của tam giác

  

42. Chứng minh định lí : Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là tam giác cân

Gợi ý : Trong ∆ABC, nếu AD vừa là đường trung tuyến vừa là đường phân giác thì kéo dài AD một đoạn AD1 sao cho DA1 = AD

Hướng dẫn:

Giả sử  ∆ABC có AD là phân giác  và DB = DC, ta chứng minh  ∆ABC  cân tại A

Kéo dài AD một đoạn DA1 = AD

Ta có:   ∆ADC =  ∆A1DC (c.g.c)

Nên 

mà  (gt)

=> 

=>   ∆ACAcân tại C

Ta lại có: AB = A1C ( ∆ADB = ∆A1DC)

              AC = A1C ( ∆ACAcân tại C)

=> AB = AC

Vậy  ∆ABC cân tại A

Tức là: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là tam giác cân

 

 

 
17 tháng 5 2017

Khi một tam giác có đường trung tuyến đồng thời là đường phân giác thì đó là tam giác cân.

Ở đây tam giác ABC có AM là trung tuyến đồng thời là phân giác vậy

=> tam giác ABC là tam giác cân (tính chất tam giác cân)

25 tháng 5 2017

Ta có hình vẽ :

A B C M H

Trên tia đổi của tia MA lấy điểm H sao cho MA=MH

Xét \(\Delta MBH\)\(\Delta MCA\) có:

\(\left\{{}\begin{matrix}AM=HM\left(theocachve\right)\\\widehat{BMH}=\widehat{CMA\left(\text{đ}^2\right)}\\BM=CM\left(AMlatrungtuyen\right)\end{matrix}\right.\)

=> \(\Delta MBH\) = \(\Delta MCA\) (c.g.c)

=> +) BH=CA ( hai cạnh tương ứng) (1)

+) \(\widehat{BHM}=\widehat{CAM}\) ( hai góc tương ứng ) (2)

Ta lại có:

AM là phân giác => \(\widehat{BAM}=\widehat{MAC}\) (3)

Từ (2) và (3) suy ra: \(\widehat{BAM}=\widehat{MHB}\)

=> \(\Delta HBA\) là tam giác cân ( vì có hai góc ở đáy bằng nhau )

=> AB=HB ( hai cạnh bên của tam giác cân ) (4)

Từ (1) và (4) suy ra :

AB=AC

=> \(\Delta ABC\) là tam giác cân ( vì có hai cạnh trong tam giác bằng nhau )

( đ.p.c.m )