Cho tam giac ABC can tai A co AB=AC.Tren tia doi cua cac tia BA va CA lay 2 diem D va E sao cho BD=CE
a) Chung minh DE||CE
b) Tu D ke vuong goc voi BC, tu E ke EN vuong goc voi BC.Chung minh DM=EN
c) Chung minh tam giac AMN la tam giac can
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b ) Xét tam giác BMD và tam giác CNE , có :
BD = CE ( gt)
góc MBD = góc ABC
góc NCE = góc ACB
mà góc ABC = góc ACB nên góc MBD = góc NCE
=> tam giác BMD = tam giác CNE ( cạnh huyền góc nhọn )
=> DM = EN ( 2 cạnh tương ứng )
c ) Xét tam giác MBA và tam giác NCA , có :
AB=AC ( gt)
MB = NC ( tam giác BMD = CNE )
180 - góc ABC = góc ABM
180 - góc ACB = góc ACN
mà góc ABC = góc ACB nên góc ABM = góc ACN
=> tam giác MBA = tam giác NCA (c.g.c)
=> AM = AN ( 2 cạnh tương ứng)
=> tam giác AMN cân
bài làm
Ta có:vì AB=AC(gt)
mà trên tia đối của AB và AC lấy điểm D và E sao cho BD=CE
=>^BDE=^CED(2 góc tương ứng)
Xét t.g BDE và t.g CED
ED là cạnh chung
BD = CE
^BDE=^CED(cmt)
=>t.g BDE=t.g CED (c.g.c)
XL mình chỉ làm đc phần a thôi ( không biết có đúng không)
a/ có: AB = AC
BD = CE
=> AB / BD = AC / CE
theo định lí đảo Thales ta suy ra: DE // BC (đpcm)
b/ có: MBD và NCE là hai tgiác vuông có cạnh huyền bằng nhau là:
BD = CE.
mặt khác do tính chất góc đối đỉnh ta có:
gócMBD = gócABC; gócNCE = gócACB
mà gócABC = gócACB (ABC là tgiác cân)
=> gócMBD = gócNCE
=> tgiácMBD = tgiácNCE
=> DM = EN (đpcm)
c/ Gọi K là trung điểm BC, do ABC là tgiác cân nên AK vuông BC (đường trung tuyến cũng là đường cao)
có BK = KC
mà MB = NC (tgiác MBD = tgiác NCE)
=> MB + BK = KC + CN
=> MK = KN
hiển nhiên AK vuông MN
tgiác AMN có AK vừa đường cao vừa trung tuyến nên là tgiác cân.
d/ IB cắt AM tại P, IC cắt AN tại Q
ta dể cm ABM và ACN là hai tgiác bằng nhau (có ba cạnh tương ứng bằng nhau đôi một)
nên hai đường cao tương ứng bằng nhau, tức là:
BP = CQ
=> tgiác PAB = tgiác QAC (hai tgiác vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)
=> AP = AQ
xét hai tgiác PAI có QAI là hai tgiác vuông có cạnh huyền:AI chung và
AP = AQ
=> tgiác API = tgiác QAI
=> góc PAI = góc QAI
mà do ta có hai tgiác bằng nhau nên:
góc PAB = góc QAC
=>góc BAI = góc CAI
Vậy: AI là tia phân giác của góc BAC và góc MAN.
*Đúng thật bài này cũng dể, em làm không được thì thấy lo rồi, nhưng đã post lên đây là có ý học hỏi. các Bác ở trên đừng nên nặng lời như vậy. người ta đánh kẻ chạy đi chứ không ai đánh kẻ chạy lại bao giờ. Chỉ đáng thương cho kẻ không biết mình ngu ở đâu...
a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )