cho tam giac ABC co AB = 3cm AC = 4 cm , BC = 5 cm, phan giac BD chung minh
a Tam giac ABC vuong tai A
b Tu D ve DE vuong goc voi BC chung minh DA = DE
c ED cat AB tai F chung minh DF > DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
a) Dùng định lí PYTHAGO đảo.
b) Chứng minh tam giác ADB=tam giác ADE
c) Sử dụng 2 góc đối đỉnh, cặp cạnh bằng nhau từ câu b để chứng minh 2 tam giác bằng nhau.
Chứng minh DF>BD mà BD=DE => DF>DE
d) Sử dụng khéo léo các đoạn thẳng lớn hơn nhau, các đoạn thẳng cọng lại với nhau ra đoạn chính.
Bài không khó, cố làm nhé. Câu cuối mình lười không viết, để bạn khác hd cũng được. Mình khuyến khích tự nghĩ
a) Ta có: \(3^2+4^2=25\)
\(5^2=25\)
suy ra: \(AB^2+AC^2=BC^2\)
\(\Rightarrow\)\(\Delta ABC\)\(\perp\)\(A\)
b) Xét 2 tam giác vuông: \(\Delta BAD\)và \(\Delta BHD\)có:
\(\widehat{ABD}=\widehat{HAD}\) (gt)
\(BD:\)cạnh chung
suy ra: \(\Delta BAD=\Delta BHD\)(ch_gn)
\(\Rightarrow\)\(DA=DH\)(cạnh tương ứng)
c) Xét 2 tam giác vuông: \(\Delta ADE\)và \(\Delta HDC\)có:
\(AD=HD\)(cmt)
\(\widehat{ADE}=\widehat{HDC}\) (đđ)
suy ra: \(\Delta ADE=\Delta HDC\)(cgv_gn)
\(\Rightarrow\)\(DE=DC\)(cạnh tương ứng)
Hình vẽ sau nha bạn (à mà bn thông cảm nha đây là lần đầu tiên mk vè hình nên cái hình hới k chính xác nhưng mà bn cứ dựa vào đó nhé)
a)
Xét \(\Delta ABD\) và \(\Delta EBD\), có:
BA=BE ( gt )
\(\widehat{ABD}=\widehat{EBD}\) ( AD là tia phân giác của góc B)
BD: cạnh chung
Suy ra: \(\Delta ABD=\Delta EBD\left(c-g-c\right)\)
\(\Rightarrow\) \(\widehat{A}=\widehat{BED}=90^0\) ( 2 góc tương ứng)
Ta có: \(\widehat{BED}+\widehat{DEC}=180^0\) (kề bù)
hay \(90^0+\widehat{DEC}=180^0\)
\(\Rightarrow\) \(\widehat{DEC}=180^0-90^0=90^0\)
\(\Rightarrow\) \(DE\perp BC\)
b)
Ta có: \(\Delta ABD=\Delta EBD\left(cmt\right)\)
Suy ra: DA=DE ( hai cạnh tương ứng)
Xét \(\Delta DAF\) và \(\Delta DEC\) , có:
\(\widehat{FAD}=\widehat{ECD}=90^0\)
\(\widehat{ADF}=\widehat{EDC}\) (đđ)
DA=DE (cmt)
Suy ra:\(\Delta DAF=\Delta DEC\) (cạnh góc vuông - góc nhọn kề nó)
suy ra: DF=DC ( 2 cạnh tương ứng)
c)
Ta có: \(\widehat{FDM}=\widehat{BDE}\) (đđ)
\(\widehat{CDM}=\widehat{ADB}\) (đđ)
mà: \(\widehat{BDE}=\widehat{ADB}\left(\Delta ABD=\Delta EBD\right)\)
\(\Rightarrow\)\(\widehat{FDM}=\widehat{CDM}\)
Ta có: \(\Delta DAF=\Delta DEC\) (cmt)
Suy ra: DF=DC ( 2 cạnh tương ứng)
Xét \(\Delta FDM\) và \(\Delta CDM\),có:
DF=DC ( cmt )
\(\widehat{FDM}=\widehat{CDM}\left(cmt\right)\)
DM: cạnh chung
Suy ra: \(\Delta FDM=\Delta CDM\left(c-g-c\right)\)
Suy ra: \(\widehat{DMF}=\widehat{DMC}\) ( 2 góc tương ứng)
Ta lại có: \(\widehat{DMF}+\widehat{DMC}=180^0\)(kề bù)
Suy ra: \(\widehat{DMF}=\widehat{DMC}=\dfrac{180^0}{2}=90^0\)
Suy ra: \(BM\perp FC\) hay \(BD\perp FC\)
a. Xét tam giác ABC có:
AC2 + AB2 = 122 +92 = 144 + 81 =225 (cm)
BC2 = 152 = 225 (cm)
Suy ra: AC2 + AB2 = BC2
=> Tam giác ABC vuông tại A
b.
Ta có AD là phân giác của góc B
=> \(\dfrac{DA}{DC}=\dfrac{BA}{BC}\) ( Tính chất đường phân giác trong tam giác)
\(\Leftrightarrow\dfrac{DA}{DC}=\dfrac{9}{15}=\dfrac{3}{5}\)
\(\Rightarrow\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{3}{2}\)
Suy ra: \(\dfrac{DA}{3}=\dfrac{3}{2}\Rightarrow DA=\dfrac{3.3}{2}=4,5\)
\(\dfrac{DC}{5}=\dfrac{3}{2}\Rightarrow DC=\dfrac{5.3}{2}=7,5\)
Vậy: DA = 4,5 (cm) và DC = 7,5(cm)