Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tta có góc HBD=góc ABC ( đối đỉnh )
góc KCE=góc ACB ( đối đỉnh )
mà góc ABC=góc ACB ( tam giác ABC cân )
suy ra góc HBD=gócKCE
xét tam giác HBD và KCE có :
HBD=KCE
BHD=CKE (=90 độ )
BD=CE
=) tam giác HBD=KCE
=)HB=CK
b) ta có góc AHB=ACK ( = 180* - góc ABC )
xét tam giác AHB và tam giác AKC có
góc AHB=gócAKC
HB=CK
AB=AC
suy ra tam giác AHB= tam giác AKC
=) góc AHK = góc AKC
c) ta có HD//KE ( cùng vuông vs BC )
mà HD=KE ( tg HBD=tgKCE )
suy ra HKED là hình bình hành
=) HK//DE
d) ta có góc HAD=góc KAE ( tg AHB=tgAKC )
=) góc HAD+BAC=góc KAE+BAC
=) góc HAE= góc KAD
do AB=AC ; BD=CE =) AB+BD=AC+CE
=) AD=AE
xét tg AHE và tg AKD có
góc HAE=góc KAD
AH=AK ( tg AHB=tg AKC )
AE=AD
suy ra tg AHE = tg AKD
e) do HKED là hình bình hành ; HK vuông vs HD
=) HKED là hình chữ nhật
mà I là gđ của 2 đường chéo HE và DK
suy ra ID=IE
xét tg AID và tg AIE có
AD=AE
ID=IE
chung AI
suy ra tg AID=tg AIE
=) góc DAI = góc EAI
=) AI là phân giác goc DAE
mà tg DAE cân tại A
suy ra AI là đường cao tg DAE
=) AI vuông vs DE
Bài 2:
a) Xét hai tam giác ABD và EBD có:
AB = EB (gt)
\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
BD: cạnh chung
Vậy: \(\Delta ABD=\Delta EBD\left(c-g-c\right)\)
Suy ra: \(\widehat{BAD}=\widehat{BED}\) (hai góc tương ứng)
Mà \(\widehat{BAD}=90^o\)
Do đó \(\widehat{BED}=90^o\) hay DE \(\perp\) BE.
b) Vì AB = EB (gt)
\(\Rightarrow\) \(\Delta ABE\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thởi là đường trung trực
Do đó: BD là đường trung trực của AE. (1)
c) Xét hai tam giác vuông ADH và EDC có:
DA = DE (\(\Delta ABD=\Delta EBD\))
\(\widehat{ADH}=\widehat{EDC}\) (đối đỉnh)
Vậy: \(\Delta ADH=\Delta EDC\left(cgv-gn\right)\)
Suy ra: AH = EC (hai cạnh tương ứng)
Ta có: BH = AB + AH
BC = EB + EC
Mà AB = EB (gt)
AH = EC (cmt)
\(\Rightarrow\) BH = BC
\(\Rightarrow\) \(\Delta BHC\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thời là đường cao của HC hay
BD \(\perp\) HC (2)
Từ (1) và (2) suy ra: AE // HC (đpcm).