Tìm GTLN
a, M=\(\frac{3}{\left(x+2\right)^2+2}\)
b, A= \(\frac{3n+9}{n-4}\)
tìm \(n\in z\) để \(A\in Z\)
hộ em với :(( đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{A}{n}=\frac{4n+4}{n}=4+\frac{4}{n}\)
\(\Rightarrow n\in U\left(4\right)\)
Lập bảng tiếp nhé!
\(\frac{B}{n}=\frac{5n+6}{n}=5+\frac{6}{n}\)
Lập bảng
\(2.\)
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}=\frac{3}{29}\cdot\frac{29}{3}-\frac{1}{5}\cdot\frac{29}{3}=1-\left(1+\frac{14}{15}\right)=1-1-\frac{14}{15}=\frac{14}{15}\)
b)\(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}=\frac{5}{9}\cdot\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
\(a,ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm1\end{cases}}\)
Sao phân số thứ 2 là \(\frac{1-2}{1+x}\) .Bạn chép đề thật chuẩn mới trả lời đúng nhé
a, 4C = 12|x|+8/4|x|-5 = 3 + 23/|x|-5 <= 3 + 23/0-5 = -8/5
=> C <= -2/5
Dấu "=" xảy ra <=> x=0
Vậy Min ...
b, Để C thuộc N => 3|x|+2 chia hết cho 4|x|-5
=> 4.(3|x|+2) chia hết cho 4|x|-5
<=> 12|x|+8 chia hết cho 4|x|-5
<=> 3.(|x|+5) + 23 chia hết cho 4|x|-5
=> 23 chia hết chi 4|x|-5 [ vì 3.(4|x|-5) chia hết cho 4|x|-5 ]
Đến đó bạn tìm ước của 23 rùi giải
b)
\(4\frac{5}{9}:2\frac{5}{18}-7< x< \left(3\frac{1}{5}:3,2+4,5.1\frac{31}{45}\right):\left(21.\frac{1}{2}\right)\)
\(\Rightarrow\frac{41}{9}:\frac{41}{18}-7< x< \left(\frac{16}{5}:\frac{16}{5}+\frac{9}{2}.\frac{76}{45}\right):\frac{21}{2}\)
\(\Rightarrow2-7< x< \left(1+\frac{38}{5}\right):\frac{21}{2}\)
\(\Rightarrow-5< x< \frac{43}{5}:\frac{21}{2}\)
\(\Rightarrow-5< x< \frac{86}{105}\)
Vì \(x\in Z\left(gt\right)\)
\(\Rightarrow x\in\left\{-4;-3;-2;-1;0\right\}.\)
Vậy \(x\in\left\{-4;-3;-2;-1;0\right\}.\)
1) Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)
\(\Rightarrow2\left(3n+2\right)-3\left(2n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow2n+1\)và\(3n+2\)là nguyên tố cùng nhau
\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản\(\left(đpcm\right)\)
câu 1 :
gọi d = ƯCLN ( 2n + 1; 3n +2 )
=> 2n + 1 chia hết cho d => 3 ( 2n +1 ) chia hết cho d
3n + 2 chia hết cho d => 2 ( 3n + 2 ) chia hết cho d
ta có : 3 ( 3n + 2 ) - [ 2 ( 2n + 21) ] hay 6n + 4 - [ 6n + 3 ] chia hết cho d
=> 1 chia hết cho d -> 2n +1 và 3n + 2 là hai số nguyên tố cùng nhau
=> \(\frac{2n+1}{3n+2}\) là phân số tối giản
cút mẹ mày đi