Nếu có số tự nhiên n sao cho k=n2 thì ta nói k là số chính phương. Tìm tất cả các số ab sao cho (ab+ba) là số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét mọi số chính phương đều có thể viết dưới dạng :
\(\left(a\cdot n+b\right)^2\) với mọi số \(a,b\) là các số tự nhiên và b nhở hơn n
mà ta có :
\(\left(a\cdot n+b\right)^2=a^2\cdot n^2+2ab\cdot n+b^2\equiv b^2mod\left(n\right)\)
vậy \(b^2< n\forall b< n\)điều này chỉ đúng khi n=2
vậy n=2
Ta có: ab + ba = (10a + b) + (10b + a)
= 10a + b + 10b + a
= 11a + 11b
= 11.(a + b)
Ta đã biết số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn, không chứa các thừa số nguyên tố với số mũ lẻ nên để ab + ba là số chính phương thì a + b = 11.k2(k thuộc N*)
Mà a,b là chữ số; a khác 0 => \(1\le a+b\le18\) => a + b = 11
=> \(\hept{\begin{cases}a=2\\b=9\end{cases};\hept{\begin{cases}a=3\\b=8\end{cases};\hept{\begin{cases}a=4\\b=7\end{cases};\hept{\begin{cases}a=5\\b=6\end{cases};\hept{\begin{cases}a=6\\b=5\end{cases};\hept{\begin{cases}a=7\\b=4\end{cases};\hept{\begin{cases}a=8\\b=3\end{cases};\hept{\begin{cases}a=9\\b=2\end{cases}}}}}}}}}\)
Vậy tất cả các số cần tìm là: 29; 38; 47; 56; 65; 74; 83; 92
Đặt \(N=3^n+19\)
Nếu n lẻ \(\Rightarrow n=2k+1\Rightarrow n=3.9^k+19\equiv\left(3-1\right)\left(mod4\right)\equiv2\left(mod4\right)\)
Mà các số chính phương chia 4 chỉ có thể dư 0 hoặc 1
\(\Rightarrow\)N không phải SCP
\(\Rightarrow n\) chẵn \(\Rightarrow n=2k\)
\(\Rightarrow\left(3^k\right)^2+19=m^2\)
\(\Leftrightarrow\left(m-3^k\right)\left(m+3^k\right)=19\)
Pt ước số cơ bản, bạn tự hoàn thành nhé
Từ gt=> 10a+b+10b+a là scp=> 11(a+b) là scp=> a+b có dạng 11k^2. Vì 0<a<10,0=<b<10 nên lần lượt thử ta thấy các số ab 56,65 thỏa mãn