Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này mình làm rồi :
ab - ba = 10a + b - (10b +a) = 9a - 9 b = 9(a - b)= 32 (a - b)
Để ab - ba là số chính phương thì a - b là số chính phương.
Mà a>b>0; 0<b,a ≤9 => 0<a-b ≤9.
=> a-b=1; a-b=4; a-b=9
+) a - b = 1 => ab ∈{21; 32; 43; 54; 65; 76; 87; 98}
ab nguyên tố => ab = 43 (thỏa mãn)
+) a - b = 4 => ab ∈{51; 62; 73; 84; 95}
ab nguyên tố => ab= 73 (thỏa mãn)
+) a- b = 9 => ab = 90 (loại)
Vậy ab = 43 hoặc 73.
Bài này mình cung làm rồi :
ab - ba = 10a + b - (10b +a) = 9a - 9 b = 9(a - b)= 32 (a - b)
Để ab - ba là số chính phương thì a - b là số chính phương.
Mà a>b>0; 0<b,a ≤9 => 0<a-b≤9.
=> a-b=1; a-b=4; a-b=9
+) a - b = 1 => ab ∈{21; 32; 43; 54; 65; 76; 87; 98}
ab nguyên tố => ab = 43 (thỏa mãn)
+) a - b = 4 => ab ∈{51; 62; 73; 84; 95}
ab nguyên tố => ab= 73 (thỏa mãn)
+) a- b = 9 => ab = 90 (loại)
Vậy ab = 43 hoặc 73.
Lời giải:
$\overline{ba}.10=\overline{ab}.45$
$(10b+a).10=(10a+b).45$
$100b+10a = 450a+45b$
$55b = 440a$
$5b=40a$
$\Rightarrow 40a=5b< 5.10<80$
$\Rightarrow a< 2$
Mà $a$ là số tự nhiên khác 0 nên $a=1$.
$5b=40.a=40\Rightarrow b=8$.
Vậy số cần tìm là $18$
\(=10.a+b-10.b-a\)
\(=9.a-9.b\)
\(=9.\left(a-b\right)\)
Mà số này là số chính phương nên a-b chỉ có 1 giá trị nên a-b=9.
Mà a>0 nên a bằng 9 và b=0.
Số cần tìm là 90.
Chúc em học tốt^^
\(\frac{ }{ab}-\frac{ }{ba}\)=a.10+b-b.10+a=a.9+b.(-9)=a.9+(-b).9=9.[a+(-b)]=9.(a-b)
Để 9.(a-b) là số chính phương thì hoặc a-b=4 hoặc a-b=9
Trường hợp 1: Vì a,b là các chữ số ; a khác 0 nên
a-b=4=5-1=6-2=7-3=8-4=9-5
Vậy hoặc a=5 ; b=1 hoặc a=6 ; b=2 hoặc a=7 ; b=3 hoặc a=8 ; b=4 hoặc a=9 ; b=5
Trường hợp 2: a-b=9. Vì a,b là các chữ số nên không có giá trị nào của a,b thỏa mãn trường hợp này.
Kết luận : (những kết quả ở trường hợp 1)
Ta có: 30 < ab + ba + ac < 289 (Ở đây mình không cần biết là các số có chữ số nào khác nhau hay không, mình chỉ cần lấy 10 x số số hạng và 99 x số số hạng là mình sẽ giới hạn được đáp án)
Do 30 < ab + ba + ac < 289 và tổng là các số nguyên tố nên ta có các tổng sau: 36; 49; 64; 81; 100; 121; 144; 169; 196; 289.
Ta xét tổng thì ta lại có: 10a + b + 10b + c + 10c + a = 11a + 11b + 11c = 11(a + b + c)
Suy ra tổng chia hết cho 11 => Tổng của chúng chỉ còn là 121
Bây giờ ta có ab + ba + ac = 121; a + b + c = 11 và các số ab, bc, ca là các số nguyên tố
Vậy có các kết quả đúng là 13 + 37 + 71 = 121 với a = 1; b = 3; c = 7
và 17 + 73 + 31 = 121 với a = 1; b = 7; c = 3
và các đáp án đảo ngược khác như a = 3; b = 1; c = 7 ;...