\(f\left(x\right)=\left(m^2-1\right)x^3+\left(m-1\right)x^2-2x-1\)Cho đa thức trên tìm giá trị của hằng số m để đa thức có bậc bằng 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề bài thiếu, ko giải được, cái nghiệm -1 có thể của f(u) hoặc của u'
a) Ta có: \(a = m + 1\)
Để đa thức \(\left( {m + 1} \right){x^2} + 2x + m\) là tam thức bậc hai khi và chỉ khi \(m + 1 \ne 0\)
\( \Leftrightarrow m \ne - 1\)
Vậy khi \(m \ne - 1\) thì đa thức \(\left( {m + 1} \right){x^2} + 2x + m\)là tam thức bậc hai
b) Ta có: \(a = 2\)
Để đa thức \(m{x^3} + 2{x^2} - x + m\) là tam thức bậc hai khi và chỉ khi \(m = 0\)
Vậy khi \(m = 0\) thì đa thức \(m{x^3} + 2{x^2} - x + m\)là tam thức bậc hai
c) Ta có \(a = - 5\)
Hệ số c không ảnh hưởng đến tam thức bậc hai
Vậy đa thức \( - 5{x^2} + 2x - m + 1\) là tam thức bậc hai với mọi m
Ta có : \(f_{\left(x\right)}=\left(m^2-25\right)x^4+\left(20+4m\right)x^3+7x^2-9\)
Để đa thức \(f_{\left(x\right)}\) là đa thức bậc \(3\) thì :
\(m^2-25=0\)
\(\Leftrightarrow m^2=25\)
\(\Leftrightarrow m=\pm5\)
Vậy để đa thức \(f_{\left(x\right)}\) là đa thức bậc 3 theo biến x thì \(m=\pm5\)