K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Tìm các số tự nhiên a, b, c khác 0 thỏa mãn:\(\frac{28}{29}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< 1.\)2. Chứng minh rằng trọng tâm, trực tâm và tâm đường tròn nội tiếp (giao điểm của 3 đường trung trực) trong một tam giác thẳng hàng.3. chứng minh rằng nếu a,b,c là các số hửu tỉ thì \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hửu tỉ.4.Cho tam giác ABC có \(\widehat{A}=30^0\), BC=2cm. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

1. Tìm các số tự nhiên a, b, c khác 0 thỏa mãn:\(\frac{28}{29}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< 1.\)

2. Chứng minh rằng trọng tâm, trực tâm và tâm đường tròn nội tiếp (giao điểm của 3 đường trung trực) trong một tam giác thẳng hàng.

3. chứng minh rằng nếu a,b,c là các số hửu tỉ thì \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hửu tỉ.

4.Cho tam giác ABC có \(\widehat{A}=30^0\), BC=2cm. Trên cạnh AC lấy điểm D sao cho \(\widehat{CBD}=60^0\). Tính độ dài AD.

5. Tìm các số a,b sao cho 2007ab là bình phương của số tự nhiên.

6. Cho tam giác ABC vuông tại A, đường cao AH. Gọi M,N lần lượt là trung điểm của AH và BH. Chứng minh rằng \(CM\perp AN\)

7. Chứng minh rằng: \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{100}}>10\)

8. Cho tam giác ABC, H là trực tâm, O là tâm đường tròn đi qua ba đỉnh của tam giác. Chứng minh rằng khoảng cách từ O đến một cạnh của tam giác bằng một nửa khoảng cách từ H đến đỉnh đối diện.

9. Tìm x,y,z biết: \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

10. Độ dài ba cạnh của 1 tam giác tỉ lệ với 2;3;4. Hỏi ba chiều cao tương ứng của tam giác đó tỉ lệ với ba số nào?

2
11 tháng 4 2018

Bài 7 : 

( bạn đạt A = (...) cái biểu thức đấy nhé, tự đặt ) 

Ta có : 

\(\frac{1}{\sqrt{1}}=\frac{1}{1}>\frac{1}{10}=\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)

\(............\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

\(\Rightarrow\)\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)

\(A>\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)

\(\Rightarrow\)\(A>10\)

Vậy \(A>10\)

Chúc bạn học tốt ~ 

11 tháng 4 2018

Bạn làm được mình bài 7 thôi à, mình thấy bạn giỏi lắm mà. Mình có tới mấy chục bài cần giải cơ. Dạo này mình hỏi nhiều vì sắp đi thi.

7 tháng 3 2020

2) Em nhầm đề ca/b+1

Ta có:

VT = \(\frac{ab}{c+a+b+c}+\frac{bc}{a+a+b+c}+\frac{ac}{b+a+b+c}\)

=\(\frac{ab}{\left(a+c\right)+\left(b+c\right)}+\frac{bc}{\left(a+b\right)+\left(a+c\right)}+\frac{ac}{\left(a+b\right)\left(b+c\right)}\)

 =\(\frac{ab}{4}.\frac{4}{\left(a+c\right)+\left(b+c\right)}+\frac{bc}{4}.\frac{4}{\left(a+b\right)+\left(a+c\right)}+\frac{ac}{4}.\frac{4}{\left(a+b\right)+\left(b+c\right)}\)

\(\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)+\frac{bc}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{ac}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)

=\(\frac{1}{4}\left[\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\left(\frac{ab}{b+c}+\frac{ac}{b+c}\right)+\left(\frac{bc}{a+b}+\frac{ac}{a+b}\right)\right]\)

\(=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)

Dấu "=" xảy ra <=>  a= b = c =1/3

31 tháng 3 2016

a) Từ giả thiết suy ra \(\overrightarrow{AB}=\left(2;2\right);\overrightarrow{BC}=\left(-1;-5\right)\) 

Do \(2:\left(-1\right)\ne2:\left(-5\right)\) nên A, B, C không thẳng hàng hay A, B, C là ba đỉnh của một tam giác

b)

- Gọi \(G\left(x_1;y_1\right)\) là trọng tâm của tam giác ABC.

Khi đó \(x_1=\frac{1+3+3}{3}=2\) và \(y_1=\frac{2+4+\left(-1\right)}{3}=\frac{5}{3}\)

Suy ra \(G\left(2;\frac{5}{3}\right)\)

- Gọi \(H\left(x_2,y_2\right)\) là trực tâm của tam giác ABC. Khi đó H thỏa mãn :

\(\begin{cases}AH\perp BC\\CH\perp AB\end{cases}\) \(\Rightarrow\begin{cases}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{CH}.\overrightarrow{AB}=0\end{cases}\)

Từ đó, ta có hệ 

\(\begin{cases}x_2+5y_2-6=0\\x_2+y_2-1=0\end{cases}\)

Giải hệ thu được ( \(x_2;y_2\)\(=\left(-\frac{3}{4};\frac{7}{4}\right)\) do đó \(H\left(-\frac{3}{4};\frac{7}{4}\right)\)

- Gọi \(I\left(x_3,y_3\right)\) là tâm đường tròn ngoại tiếp tam giác ABC,

do \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{IH}\) nên ta có hệ :

\(\begin{cases}1-x_3+3-x_3+2-x_3=-\frac{3}{4}-x_3\\2-y_4+4-y_3-1-y_3=\frac{7}{4}-y_3\end{cases}\)

Giải hệ ta thu được \(\left(x_3,y_3\right)=\left(\frac{27}{8};\frac{13}{8}\right)\)

Do đó \(I\left(\frac{27}{8};\frac{13}{8}\right)\)

 

30 tháng 3 2016

Câu 1 bạn cộng vào A 4 đơn vị còn mỗi phân thức bên vế phải thì cộng mỗi cái bàng một đơn vị, sau đó sẽ có 2 phân thức tử bằng a+b và 2 phân thức tử bằng c+d, bạn đặt ra ngoài làm nhân tử chung, bên trong ngoặc sẽ là 1/a+b + 1/b+c, bạn áp dụng bất đẳng thức 1/a + 1/b >= 4/a+b sẽ được bên trong ngoặc là 4/a+b+c+d, nhân 2 cái ở ngoài vào, rút gọn phân thức đi sẽ được kết quả là A+4 >= 4 nên A>=0

1,a/giải hệ \(x+y+\frac{1}{x}+\frac{2}{y}=5\)và      \(x^2+y^2+\frac{1}{x^2}+\frac{4}{y^2}=7\)b/ giải phương trình \(\frac{x+\sqrt{1-x^2}}{1-2x^2}=1\)2,a/ các cạnh a,b,c của tam giác ABC thoả mãn đẳng thức sau.hỏi tam giác ABC là tam giác gì?\(\frac{1}{P}=\frac{1}{P-a}-\frac{1}{P-b}-\frac{1}{P-c}\)b/ các số dương x,y,z thoả mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)                                và            x+y+z=2 hãy...
Đọc tiếp

1,a/giải hệ \(x+y+\frac{1}{x}+\frac{2}{y}=5\)

và      \(x^2+y^2+\frac{1}{x^2}+\frac{4}{y^2}=7\)

b/ giải phương trình \(\frac{x+\sqrt{1-x^2}}{1-2x^2}=1\)

2,a/ các cạnh a,b,c của tam giác ABC thoả mãn đẳng thức sau.hỏi tam giác ABC là tam giác gì?

\(\frac{1}{P}=\frac{1}{P-a}-\frac{1}{P-b}-\frac{1}{P-c}\)

b/ các số dương x,y,z thoả mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)

                                và            x+y+z=2

 hãy tính \(P=\sqrt{\left(1+X\right)\left(1+y\right)\left(1+z\right)}\left(\frac{\sqrt{x}}{1+x}+\frac{\sqrt{y}}{1+y}+\frac{\sqrt{z}}{1+z}\right)\)

3, ba đường tròn (O,R),(O1,R1).(O2,R2) vời R<R1<R2 tiếp xúc ngoài với nhau từng đôi một đồng thời cùng tiếp xúc với một đường thẳng,gọi S, S1, S2 lần lượt là diện tích các hình tròn tâm O,O1,O2.

Chứng minh \(\frac{1}{\sqrt[4]{S}}=\frac{1}{\sqrt[4]{S1}}+\frac{1}{\sqrt[4]{S2}}\)

4,Cho đường tròn tâm O bán kính R và đường tròn tâm O' bán kính R' cắt nhau tại A Và B. TRên tia đổi của tia AB,lấy điểm C,Kẻ tiếp tuyến CD.CE với đường tròn tâm O(D,E là các tiếp điểm và E nằm trong đường tròn tâm O') đường thẳng AD.AE cắt đường tròn tâm O' lần lượt tại M,N (M và N khác A) tia DE cắt MN tại I ,chứng minh rằng

a, tam giác MIB đồng dạng với tam giác AEB

b. O'I vuông góc với MN

5, tam giác ABC Có góc A không nhọn, BC =a,CA=b,AB=c

Tìm Min của P=(1-a/b)(1-b/c)(1-c/a)

2
15 tháng 5 2016

Có vẻ phê ...

15 tháng 5 2016

Bạn đăng từng câu 1 thui chứ, nhìn cái đề đã thấy sợ r ns j lak lm