Tìm một số tự nhiên có 4 chữ số, biết rằng nếu lấy số đó cộng với tổng các chữ số
của nó thì được 2000.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 6:15=0 dư 6
66:15=4 dư6
666:15=44 dư 6.....
vậy dư 6
Gọi số đó là ab \(\left(a\ne0\right)\), (a,b là chữ số)
Ta có: ab + a+b =80 <=> 10a+b+a+b=80 <=> 11a+2b=80
Vì \(b\le9\Rightarrow2b\le18\Rightarrow11a\ge62\Rightarrow a\ge6\)
Mà ta có 11a+2b=80, 2b chia hết cho 2, 80 chia hết cho 2 => 11a chia hết cho 2 => a chia hết cho 2
=> a=6 hoặc a=8
Nếu a=6 thì b=7 => số đó là 67.
Nếu a=8 thì b=-4 (loại)
Vậy số đó là 67
Gọi số đó là abcd
abcd + a + b + c + d = 1993
a x 1001 + b x 101 + c x 11 + d x 2 = 1993
a phải = 1 (vì nếu a = 2. 2 x 1001 = 2002, quá 1993)
1 x 1001 + b x 101 +c x 11 + d x 2 = 1993
b x 101 + c x 11 + d x 2 = 1993 - 1001 = 992
b phải = 9
9 x 101 + c x 11 + d x 2 = 992
c x 11 + d x 2 = 992 - 909 = 83
c = 7
7 x 11 + d x 2 = 83
d x 2 = 83 - 77 = 6
d = 6 : 2 = 3
Vậy số cần tìm là 1973
Lời giải:
Gọi số cần tìm là $\overline{abcd}$ với $a,b,c,d\in\mathbb{N}; a,b,c,d\leq 9; a\neq 0$
Theo bài ra ta có:
$\overline{abcd}+a+b+c+d=2000(*)$
Suy ra $\overline{abcd}<2000$
Suy ra $a<2$. Do đó $a=1$
Thay vô $(*)$ ta có: $\overline{1bcd}+1+b+c+d=2000$
$1000+100\times b+10\times c+d+1+b+c+d=2000$
$101\times b+11\times c+2\times d=999$
Nếu $b=8$ thì $11\times c+2\times d=191$. Mà $11\times c+2\times d$ lớn nhất bằng $11\times 9+2\times 9=117$ nên vô lý.
Nếu $b<8$ thì $11\times c+2\times d$ càng lớn hơn $191$, càng vô lý.
Do đó $b=9$
Khi ấy: $11\times c+2\times d=90$
Nếu $c=6$ thì $2\times d=24$. Điều này vô lý do $2\times d$ lớn nhất bằng $18$
Nếu $c<6$ thì $2\times d$ càng lớn hơn $24$, càng vô lý.
Do đó $c=7,8,9$. Thay vào ta tìm được $d=1$ khi $c=8$.
Vậy số cần tìm là $1981$