giúp em với nha
cho tam giác ABC nội tiếp đường tròn (O) (AB<AC) . Phân giác trong của góc A cắt (O) ở M , phân giác ngoài của góc A cắt (O) tại N .
a . CM : MN vuông góc BC
b. gọi O1 , O2 lần lượt là tâm đường tròn ngoại tiếp tam giác ABD ; ACD . CM : MB là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD và B; O1 ; N thẳng hàng
c . chứng minh : tam giác AO1O2 đồng dạng ABC
d . CM : OO1 = OO2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB và ΔABE có
\(\widehat{BAE}\) chung
\(\widehat{ABD}=\widehat{AEB}\)
Do đó: ΔADB\(\sim\)ΔABE
Suy ra: \(AB^2=AD\cdot AE\)
\(a,\widehat{AEB}=\dfrac{1}{2}sđ\stackrel\frown{AB};\widehat{ABC}=\dfrac{1}{2}sđ\stackrel\frown{AC}\)
Mà \(\Delta ABC\) cân tại \(A\) nên \(AB=AC\Rightarrow\stackrel\frown{AB}=\stackrel\frown{AC}\)
\(\Rightarrow\widehat{AEB}=\widehat{ABC}\\ \Rightarrow\Delta ABE\sim\Delta ADB\left(g.g\right)\\ \Rightarrow\dfrac{AB}{AD}=\dfrac{AE}{AB}\Rightarrow AB^2=AE\cdot AD\)
\(b,\widehat{AEB}=\widehat{ABC}\) nên AB là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ABC\)
ta có:
gọi H là trung điểm BC
AH=6
sinB=AH/AB=6/10
theo định lí sin: AC/sinB=2R
<=>10/(6/10)=2R=>R=25/3 cm ( ngoại tiếp)
S=1/2.AH.BC=48
p=18
S=pr
=>r=S/p=48/18=2,6 (nội tiếp)
Gọi AM là đg cao tg ABC thì AM cũng là trung tuyến
Do đó \(BM=\dfrac{1}{2}BC=8\left(cm\right)\)
Áp dụng PTG: \(AM=\sqrt{AB^2-BM^2}=6\left(cm\right)\)
Ta có \(S=p\cdot r\) với p là nửa chu vi, S là diện tích, r là bán kính đg tròn nt tg ABC
Mà \(S=\dfrac{1}{2}AM\cdot BC=48\left(cm^2\right);p=\dfrac{10\cdot2+16}{2}=18\left(cm\right)\)
\(\Rightarrow r=\dfrac{S}{p}=\dfrac{48}{18}\approx2,7\left(cm\right)\)
a, ABDC nội tiếp
=> ˆBAH = ˆBCD
ACED nội tiếp
=> OAC^ = CDE^
Lại có ΔDEA nội tiếp đường tròn đường kínhAE
=> DE ⊥ AD
mà AD ⊥ BC
=> DE // BC=>BCD^ =CDE^ ( so le trong)
=>BAH^ = OAC^
b, DE // BC=> BDEC là hình thang (*)
Lại có:
DBC^ = DAC^ ( BDAC nội tiếp) (1)
BCE^= EAB^ ( ABEC nội tiếp) (2)
Lại có: BAH^ = OAC^
=> BAH^ + HAO^ = OAC^ + ˆHAO
=> EAB^ = DAC^ (3)
Từ (1) (2) (3) => DBC^= BCE^ (**)
từ (*) và (**) => BCED là hình thang cân
a: Xét (O) có
ΔABC nội tiếp
BC là đường kính
DO đó: ΔABC vuông tại A
a: góc BHD+góc BMD=180 độ
=>BHDM nội tiếp
b: BHDM nội tiếp
=>góc HDM+góc HBM=180 độ
=>góc ADM=góc ABC
=>góc ADM=góc ADC
=>DA là phân giáccủa góc MDC
c: Xét tứ giác DHNC có
góc DHC=góc DNC=90 độ
=>DHNC nội tiếp
=>góc NHD=góc NDC
góc NHD+góc MHD
=180 độ-góc NCD+góc MBD
=180 độ+180 độ-góc ABD-góc ACD
=180 độ
=>M,H,N thẳng hàng