Tìm gái trị lớn nhất hoặc nhỏ nhất
\(-10-\left(x-3\right)^2-|y-5|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để biểu thức trên lớn nhất thì \(\left(x-2\right)^2+5\) phải nhỏ nhất
Ta có \(\left(x-2\right)^2\ge0\)với mọi x
=> \(\left(x-2\right)^2+5\ge5\)
Vậy biểu thức trên đạt giá trị lớn nhất là 1/5
Để A lớn nhất thì tử phải nhỏ nhất hay \(x^2+3x+2\) nhỏ nhất
\(x^2+3x+2=x^2+2\cdot\frac{3}{2}+\frac{9}{4}+2-\frac{9}{4}\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Dấu "=" xảy ra khi\(x+\frac{3}{2}=0\Leftrightarrow x=-\frac{3}{2}\)
Min \(x^2+3x+2=-\frac{1}{4}\) khi x=-3/2
Vậy
\(MaxA=\frac{2}{-\frac{1}{4}}=2\cdot\left(-4\right)=-8\)
a)4x2-4x+3
=[(2x)2-4x+1]+2
=(2x+1)2+2 \(\ge\)2 với mọi x
Vậy GTNN của 4x2-4x+3 là 2 tại
(2x+1)2+2=2
<=>(2x+1)2 =0
<=>2x+1 =0
<=>x =\(\frac{-1}{2}\)
b)-x2+2x-3
=(-x2+2x-1)-2
= -(x2-2x+1)-2
=-(x-1)2-2 \(\le\)-2
Vậy GTLN của -x2+2x-3 là -2 tại :
-(x-1)2-2=-2
<=>-(x-1)2 =0
<=>x-1 =0
<=>x =1
Ta có :
\(\left|x-1,2\right|\ge0;\left|y-\frac{3}{4}\right|\ge0\)
\(\Rightarrow\left|x-\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|-1,5\ge-1,5\forall x;y\)
Dấu \("="\)
\(\Leftrightarrow\hept{\begin{cases}\left|x-\frac{1}{2}\right|=0\\\left|y-\frac{3}{4}\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{3}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}\end{cases}}}\)
Vậy ...
Ta có :
\(2\left|x+3\right|\ge0;3\left|y-1\right|\ge0\)
\(\Rightarrow Q=-14-2\left|x+3\right|-3\left|y-1\right|\le-14\forall x;y\)
Dấu \("="\)
\(\Leftrightarrow\hept{\begin{cases}\left|x+3\right|=0\\\left|y-1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+3=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
Vậy ...
Giá trị nhỏ nhất của B = 0
Giá trị lớn nhất của Q = -11