K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2018

sai bạn nhé 

3 tháng 4 2018

hợp số

k mk

6 tháng 11 2019

1

gọi số cần tìm là p.dễ thấy p lẻ

=>p=a+2 và p=b-2

=>a=p-2 và b=p+2

vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3

với p-2=3=>p=5=7-2(chọn)

p=3=>p=1+2(loại)

p+2=3=>p=1(loại)

vậy p=5

2

vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3 
theo giả thiết: 
p3 = p2 + d = p1 + 2d (*) 
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ) 
đặt d = 2m, xét các trường hợp: 
* m = 3k => d chia hết cho 6 
* m = 3k + 1: khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 2 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4 
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2 
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt) 
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1 
* m = 3k + 2, khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 4 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8 
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt) 
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2 
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.

3

ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.

mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ

=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6

4

vì p là SNT >3=>p=3k+1 hoặc p=3k+2

với p=3k+1=>p+8=3k+9 chia hết cho 3

với p=3k+2=>p+4=3k+6 ko phải là SNT

vậy p+8 là hợp số

5

vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3

vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3

=>8p+1 là hợp số

6.

Ta có: Xét:

+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)

+n=1

=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)

+n=2

=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)

+n=3

=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)

+n=4

n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)

Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3

+n=4k+1

⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)

+n=4k+2

=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)

+n=4k+3

=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)

⇔n=4

12 tháng 3 2022

4.vì p là số nguyên tố >3

nên p có dạng 3k+1;3k+2

xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)

xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)

vậy p+8=(3k+1)+8=3k+9 chia hết cho 3

Vậy p+8 là hợp số

 

5 tháng 8 2016

Do n nghuyên tố > 3 => n không chia hết cho 3 => n2 không chia hết cho 3

=> n2 chia 3 dư 1; 2006 chia 3 dư 2

=> n2 + 2006 chia hết cho 3

Mà 1 < 3 < n2 + 2006

=> n2 + 2006 là hợp số

5 tháng 8 2016

n là SNT lớn hơn 3

=> n ko chia hết cho 3

=>n2 chia 3 dư 1

=>n2=3k+1

=>n2+2006=3k+1+2006=3k+2007 chia hết cho 3 (vì 3k và 2007đeều chia hết cho 3)

=>n2+2006 là hợp số

22 tháng 10 2016

a. Không vì sở dĩ số4 đã là hợp số

b. Ở đây là hai số phải ko? Có vì tổng hai số là số lẻ=> có một số chẵn và một số lẻ. Số lẻ là snt thì chắc chắn rồi còn số chẵn thì là 2. Vậy ở đây là có

17 tháng 11 2015

Tham khảo câu hỏi tương tự nhé bạn .

Tick tớ đc chứ 

27 tháng 11 2016

4 bạn ạ

20 tháng 1 2018

Ta có :

Coi : \(A=\left(a-1\right)\left(a+4\right)=\left(a-1\right).a+\left(a-1\right).4=a^2-a+4a-4\)

Vì a là số nguyên tố lớn hơn 3 nên a=3k+1 hoặc a=3k+2
Với a=3k+1:

\(A=\left(3k+1\right)^2-\left(3k+1\right)+4.\left(3k+1\right)-4\)

\(=9k^2+1+2.3k-3k-1+12k+4-4\)

\(=9k^2+6k-3k+12k+1-1+4-4\)

\(=9k^2+15k\)

Với k là số chẵn: A là tổng của 2 số chẵn nên chia hết cho 2
Với k là số lẻ: A là tổng của 2 số lẻ-> là một số chẵn chia hết cho 2
=> Trong mọi trường hợp A luôn chia hết cho 2
Lại có:
9k2
 chia hết cho 3
15k chia hết cho 3
=> A=9k2+15k chia hết cho 3
Vì ƯCLN(2,3)=1 và A chia hết cho 2 , 3
=> A chia hết cho 2.3=6
=> A chia hết cho 6
Làm tương tự với k=3k+2

:D

6 tháng 11 2016

mk cx jống như bn Đoàn Nguyễn Thùy Linh

6 tháng 11 2016

cũng có thể là hợp số,cũng có thể là nguyên tố.Vì số 2 và 3 đều là số nguyên tố.Còn số 7 và 8 thì 7 là nguyên tố còn 8 là hợp số.Nên đáp án là cả hai.

10 tháng 1 2016

Vì n lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2:

Với n = 3k +1 thì:

 n^2 + 2006 = (3k+1). (3k+1) +2006

                  = 9.k.k + 3k+3k+1 + 2006

                  = 3.(3.k.k +1+1)+1+2006

                  = 3.(3.k.k +1+1) + 2007 chia hết cho 3

=> Với n = 3k+1 thì n^2 + 2006 là hợp số 

Với n= 3k+2 thì:

(3k+2).(3k+2)+2006 = 9.k.k+6k+6k+4+2006

                             =3(3.k.k + 2k +2k)+4+2006

                             =3(3.k.k +2k+2k)+2010 chia hết cho 3

=>Với n = 3k+2 thì n^2 +2006 là hợp số

Vậy với mọi số nguyên tố n lớn hơn 3 thì n^2 +2006 là hợp số

(Hãy làm theo cách của mình đi, đúng đó.Từ đóhãy tick cho mình nha)

 

                   =

 

 

10 tháng 1 2016

TH1: n = 3k + 1 => (3k + 1)2 + 2006 <=> 9k2 + 6k + 1 + 2006 = 3k(3k + 2) + 2007 

3k(3k + 2)  chia hết cho 3 và 2007 chia hết cho 3 =>[3k(3k + 2) + 2007] chia hết cho 3   (1)

TH2: n = 3k + 2 => (3k + 2)2 + 2006 <=> 9k2 + 12k + 4 + 2006 = 3k(3k + 4) + 2010

3k(3k + 4)  chia hết cho 3 và 2010 chia hết cho 3 => [3k(3k + 4) + 2010] chia hết cho 3  (2)

Từ (1) và (2) => n2 + 2006 là hợp số