a:Chứng tỏ rằng tổng sau lớn hơn 1
A= 1/10+1/11+1/12+...+1/99+1/100
b: Cho S= 1/21+1/22+...+1/35. Chứng minh rằng S>1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có
A = \(\dfrac{1}{10}\) + \((\dfrac{1}{11}\) + \(\dfrac{1}{12}\) + ...+ \(\dfrac{1}{100}\)\()\)
⇒ A > \(\dfrac{1}{10}\) + \((\dfrac{1}{100}\) + \(\dfrac{1}{100}\) + ...+ \(\dfrac{1}{100}\)\()\)90 số hạng
⇒ A > \(\dfrac{1}{10}\) + \(\dfrac{90}{100}\)
⇒ A > 1
vậy A > 1
b: ta có
S = (\(\dfrac{1}{21}\) + \(\dfrac{1}{22}\)+ \(\dfrac{1}{23}\) + \(\dfrac{1}{24}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{26}\) + \(\dfrac{1}{27}\)+ \(\dfrac{1}{28}\) + \(\dfrac{1}{29}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{31}\) + \(\dfrac{1}{32}\)+ \(\dfrac{1}{33}\) + \(\dfrac{1}{34}\) + \(\dfrac{1}{35}\))
⇒ S > (\(\dfrac{1}{25}\) + \(\dfrac{1}{25}\)+ \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{30}\) + \(\dfrac{1}{30}\)+ \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{35}\) + \(\dfrac{1}{35}\)+ \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\))
⇔ S > \(\dfrac{5}{25}\)+\(\dfrac{5}{30}\)+\(\dfrac{5}{35}\)
⇔ S > \(\dfrac{1}{5}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{7}\)
⇔ S > \(\dfrac{107}{210}\)> \(\dfrac{105}{210}\)=\(\dfrac{1}{2}\)
vậy S > \(\dfrac{1}{2}\)
Easy!!
\(S=\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{35}>\dfrac{1}{29}+\dfrac{1}{29}+...+\dfrac{1}{29}\) (15 phân số \(\dfrac{1}{29}\))
\(=\dfrac{1.15}{29}=\dfrac{15}{29}>\dfrac{1}{2}\) (*)
\(\Rightarrow\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{35}>\dfrac{1}{2}^{\left(đpcm\right)}\)
P/s: đpcm là điều phải chứng minh
Có \(S=\dfrac{1}{21}+\dfrac{1}{22}+......+\dfrac{1}{35}\)
\(S=\dfrac{1}{21}+\dfrac{1}{22}+.........+\dfrac{1}{35}>\dfrac{1}{29}+\dfrac{1}{29}+\dfrac{1}{29}+........+\dfrac{1}{29}\)( 15 phân số \(\dfrac{1}{29}\))
\(S=\dfrac{15}{29}>\dfrac{1}{2}\)
\(S>\dfrac{1}{2}\)
Vậy S > \(\dfrac{1}{2}\)(đpcm)
Ta có S = \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{74}+\frac{1}{75}+\frac{1}{76}+\frac{1}{77}+...+\frac{1}{99}\)
\(=\left(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{74}\right)+\left(\frac{1}{75}+\frac{1}{76}+\frac{1}{77}+...+\frac{1}{99}\right)\)
25 số hạng 25 số hạng
\(>\left(\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}\right)+\left(\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}\right)\)
\(=25.\frac{1}{75}+25.\frac{1}{100}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)(ĐPCM)
Vậy S > 1/2
ta có 1/50>1/100
1/51>1/100
..........
1/99>1/100
vậy S>1/100*50=1/2
suy ra S>1/2
ta có:1/50>1/100
1/51>1/100
...............
1/99>1/100
=>S>50*1/100
=>S>1/2(đpcm)
1/50>1/100
1/51>1/100
...................
1/99>1/100
=>S>50*1/100(do từ 1/50 đến 1/99 có 50 số hạng)
=>S>1/2
Lời giải:
a, Ta có: \(A=\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+...+\frac{1}{22}>\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=\frac{1}{22}.11=\frac{11}{22}=\frac{1}{2}\)
Vậy: \(A>\frac{1}{2}\)
b, Ta có: \(B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{99}+\frac{1}{100}\)
\(=\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\)
Mà: \(\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\text{}\text{}\text{}>\left(\frac{1}{50}+...+\frac{1}{50}+\frac{1}{50}\right)+\left(\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\right)\)
=> \(B\text{}\text{}\text{}>\frac{1}{50}.41+\frac{1}{100}.50=\frac{41+25}{50}=\frac{33}{25}>1\)
Vậy: \(B>1\)
c, Ta có: \(C=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{16}+\frac{1}{17}< \frac{1}{5}+\frac{1}{6}+\left(\frac{1}{7}+...+\frac{1}{7}+\frac{1}{7}\right)=\frac{11}{30}+11.\frac{1}{7}=\frac{407}{210}< \frac{420}{210}=2\)
Vậy: \(C< 2\)
Chúc bạn học tốt!Tick cho mình nhé!
đề sai hả bạn số hạng cuối có phải là \(\frac{1}{100}\)đúng không