Tính giá trị biểu thức
(1-1/2)x(1-1/3)x(1-1/4)x....x(1-1/2007)
các bạn giúp mk với
nhanh lên mk cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)
Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)
Vậy MinA = 11 khi -2 =< x =< 9
b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)
Dấu "=" xảy ra khi x = 1
Vậy MaxB = 3/4 khi x=1
Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)
Vậy \(A_{min}=11\) khi \(2\le x\le9\)
a) Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(2x=\dfrac{1}{3}\)
hay \(x=\dfrac{1}{6}\)
Vậy: \(A_{min}=-\dfrac{7}{4}\) khi \(x=\dfrac{1}{6}\)
b) Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)
\(\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)
Do đó: \(\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)
\(\Leftrightarrow\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|+4\ge4\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)
Vậy: \(B_{min}=4\) khi x=2 và y=6
Ta có
\(2\left(x^3+y^3\right)=2\left(x^3+3xy\left(x+y\right)+y^3\right)-6xy\left(x+y\right)\)
\(=2\left(x+y\right)^3-6xy=2-6xy\)
Vậy ta có
\(B=2-6xy-3\left(x^2+y^2\right)=2-3\left(x+y\right)^2=-1\)
Lời giải:
ĐKXĐ: $x>0; x\neq 1$
\(P=\frac{1}{\sqrt{x}+1}+\frac{x}{\sqrt{x}(1-\sqrt{x})}=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{1-\sqrt{x}}\)
\(=\frac{1-\sqrt{x}+\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}+1)(1-\sqrt{x})}=\frac{x+1}{1-x}\)
b. Khi $x=\frac{1}{\sqrt{2}}$ thì:
\(P=\frac{\frac{1}{\sqrt{2}}+1}{1-\frac{1}{\sqrt{2}}}=3+2\sqrt{2}\)
Chả bik x- y= 5 có phải trong đề ko, giờ giải x+y = 3 trước
Ta có x2+y2 + 2xy - 4x - 4y + 1 = (x2+ 2xy + y2) - 4 ( x+y) + 1 = (x+y)^2 - 4(x+y) + 1 (1)
Thay x+y = 3 vào 1, có:
3^2 - 4.3 + 1 = 9-12 + 1 = -2
Vậy GTBT x2+y2 + 2xy - 4x - 4y + 1 vs x+ y = 3 là -2
B= (1-1/2). ( 1-1/3).(1-1/4).(1-1/5)....(1-1/2004)
B= 1/2. 2/3 . 3/4. 4/5....2003/2004
B= 1/2004
\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2003}\right)\left(1-\frac{1}{2004}\right)\)
\(B=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2002}{2003}\cdot\frac{2003}{2004}\)
\(B=\frac{1}{2004}\)
\(=\frac{1.2.3...2006}{2.3.4...2007}\)
Sau khi rút gọn ta được
\(=\frac{1}{2007}\)
100% đúng đó!!!