Giải giúp mig bài này nữa ạ:
Cho x,y€R thỏa xy=1 và x>y.Chứg minh: (x^2+y^2)/x-y>=2√2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT cô-si, ta có:
\(\frac{1}{\left(x+1\right)}+\frac{1}{\left(y+1\right)}+\frac{1}{\left(z+1\right)}\ge3\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}\ge1-\frac{1}{\left(y+1\right)}+1-\frac{1}{\left(z+1\right)}\)
\(\Leftrightarrow\frac{y}{\left(y+1\right)}+\frac{z}{\left(z+1\right)}\ge3\sqrt{\left(\frac{yz}{\left(y+1\right)\left(z+1\right)}\right)}\)
Ta có:
\(\frac{1}{\left(x+1\right)}\ge3\sqrt{\frac{yz}{\left(x+1\right)\left(y+1\right)}}\)(1)
\(\Leftrightarrow\frac{1}{\left(y+1\right)}\ge3\sqrt{\left(\frac{xy}{\left(x+1\right)\left(z+1\right)}\right)}\)(2)
\(\Leftrightarrow\frac{1}{\left(z+1\right)}\ge3\sqrt{\left(\frac{xy}{\left(x+1\right)\left(y+1\right)}\right)}\)(3)
Từ (1); (2) và (3), ta có:
\(\frac{1}{\left(x+1\right)}+\frac{1}{\left(y+1\right)}+\frac{1}{\left(z+1\right)}\ge8\frac{xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
\(\Rightarrow xyz\le\frac{1}{8}.\text{ dau }=\text{xay ra khi }x=y=z=\frac{1}{2}\)
1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)
Mà b+a>b-a ; p là số nguyên tố
=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)
=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)
Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4
Mà p là số nguyên tố
=> \(p^2\)chia 8 dư 1
=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)
+Số chính phương chia 3 luôn dư 0 hoặc 1
Mà p là số nguyên tố lớn hơn 3
=> \(p^2\)chia 3 dư 1
=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)
Từ (1);(2)=> \(a⋮12\)
Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)
Với x,y,z dương
Ta có:(x-y)2\(\ge0\forall x;y\)
=>x2+y2\(\ge\)2xy
Dấu = xảy ra khi x=y
Tương tự y2+z2\(\ge\)2yz
z2+x2\(\ge\)2zx
Cộng vế với vế 3 BĐT =>2(x2+y2+z2)\(\ge\)2(xy+yz+zx)
<=>x2+y2+z2\(\ge\)xy+yz+zx
<=>\(\dfrac{3}{xy+yz+zx}\ge\dfrac{3}{x^2+y^2+z^2}\)
Dấu = xảy ra khi và chỉ khi x=y=z
=>\(\dfrac{3}{xy+yz+zx}+\dfrac{2}{x^2+y^2+z^2}\ge\dfrac{5}{x^2+y^2+z^2}\)
Áp dụng BĐT bunhiacopski:
\(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{3^2}+\dfrac{1}{3^2}+\dfrac{1}{3^3}\right)\le\left(\dfrac{x+y+z}{3}\right)^2=\dfrac{1}{3^2}=\dfrac{1}{9}\)(Do x+y+z=1)
Dấu = xảy ra khi và chỉ khi \(\dfrac{x}{3}=\dfrac{y}{3}=\dfrac{z}{3}\)<=>x=y=z
=>\(\dfrac{5}{x^2+y^2+z^2}=\dfrac{5}{3\cdot\left(x^2+y^2+z^2\right)\left(\dfrac{1}{3^2}+\dfrac{1}{3^2}+\dfrac{1}{3^2}\right)}\ge\dfrac{5}{3\cdot\dfrac{1}{9}}=15\)
=>\(\dfrac{3}{xy+yz+zx}+\dfrac{2}{x^2+y^2+z^2}\ge15\)(đpcm)
Dấu = xảy ra khi \(\left\{{}\begin{matrix}x=y=z\\z+y+z=1\end{matrix}\right.\)<=>x=y=z=\(\dfrac{1}{3}\)
xy - x + 2y = 3
x(y - 1) + 2y - 2 = 3 - 2
x(y - 1) + 2(y - 1) = 1
<=> (x + 2)(y - 1) = 1
=> (x + 2)(y - 1) = 1.1 = ( - 1)(- 1)
Nếu x + 2 = 1 thì y - 1 = 1 => x = - 1 thì y = 2
Nếu x + 2 = - 1 thì y - 1 = - 1 => x = - 3 thì y = 0
Vậy x = - 1 thì y = 2; x = - 3 thì y = 0
\(x\left(y-1\right)+2y-2=3-2=1\)
\(\left(y-1\right)\left(x+2\right)=1\)
y-1={-1,1)=> y={0,2}
x+2={-1,1}=>x={-3,-1}
Bài này cũng dễ
Chuyển hết qua 1 vế ta được
a^2+4b^2+3c^2–2a–12b–6c >0
<=> (a–1)^2+(2b–3)^2+3(c–1)^2 >0
Vì bất đẳng thức cuối đúng
Nên cái đề
Ta có : x2 - xy + y2 + 1
\(=x^2-2x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}+1\)
\(=\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1\)
Mà \(\left(x-\frac{y}{2}\right)^2\ge0\forall x\)
\(\left(\frac{3y}{2}\right)^2\ge0\forall x\)
Nên \(\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1\ge1\forall x\)
Vậy \(\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1>0\forall x\)
Hay : x2 - xy + y2 + 1 > 0 \(\forall x\)
Em thử nhá, ko chắc đâu. Sai xin bỏ qua cho ạ.
Dễ thấy x, y đều khác 0. Đặt x - y = t khác 0 kết hết x > y suy ra t > 0 và x = t + y. Suy ra 1 =xy = y(t+y) = yt + y2 suy ra 2 = 2yt + 2y2
\(VT=\frac{t^2+2ty+2y^2}{t}=\frac{t^2+2}{t}=t+\frac{2}{t}\) với t > 0. Áp dụng BĐT Cô si ta được:
\(VT=t+\frac{2}{t}\ge2\sqrt{t.\frac{2}{t}}=2\sqrt{2}\) (đpcm)
Đẳng thức xảy ra khi \(t=\frac{2}{t}\Rightarrow t=\sqrt{2}\text{ và }\left(t+y\right)y=1\Leftrightarrow\left(\sqrt{2}+y\right)y=1\)
\(\Leftrightarrow y^2+\sqrt{2}y-1=0\Leftrightarrow y=\frac{\sqrt{6}-\sqrt{2}}{2}\text{ hoặc }y=\frac{-\sqrt{6}-\sqrt{2}}{2}\)
\(\Rightarrow x=\frac{\sqrt{6}+\sqrt{2}}{2}\text{hoặc }x=\frac{-\sqrt{6}+\sqrt{2}}{2}\)
Do đó đẳng thức xảy ra khi \(\left(x;y\right)=\left\{\left(\frac{\sqrt{6}+\sqrt{2}}{2};\frac{\sqrt{6}-\sqrt{2}}{2}\right),\left(\frac{-\sqrt{6}+\sqrt{2}}{2};\frac{-\sqrt{6}-\sqrt{2}}{2}\right)\right\}\)
Bạn ghi thiếu điều kiện rồi là số thực dương
Ta có (x^2-2xy+y^2+2xy)/x-y
<=>[ (x-y)^2+2] / x-y
Tách ra làm 2 phân số
x-y+ (2/x-y)
Dùng cô-si cho 2 số dương
Thì biểu thức trên sẽ ≥ 2✓(x-y)(2/x-y)
= 2✓2
Vậy cái đề
Ko dùng cô si thì còn cách nào ko bạn