Tìm \(x\in N\)biết?
a. x là nhỏ nhất khác 0 và x chia hết cho 32, x chia hết cho 35 và x chia hết cho 99
b. x chia hết cho 39, x chia hết cho 65, x chia hết cho 91 và 4000<x<6000
*Xin cám ơn ai giải giúp cho mình nhưng mà xin giải cụ thể một chút!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x chia hết cho 39;65;91 => x là BC( 39;65;91) = { 1365; 2730; 4095; 5460 ;8190; 10920;...}
Vì 4000<x<6000
=> x = { 4095 ; 5460 }
1) Vì x là số nhỏ nhất khác 0 trong tập hợp BC(21;35;99)\(\Rightarrow\)x\(\in\)BCNN(21;35;99)=32.5.7.11=3465
Vậy x = 3465
2) Vì x chia hết cho 12, x chia hết cho 21, x chia hết cho 25\(\Rightarrow\)x\(\in\)BC(12;21;25)
BCNN(12;21;25)=22.3.52.7=2100
BC(12;21;25)=B(2100)={0;2100;4200;....}
Vì x<500 \(\Rightarrow\)x=0
3) BCNN(34;85)=2.5.17=170
BC(34;85)=B(170)={0,170,340;510;680;850;1020;...}
Vì 500<x<1000\(\Rightarrow\)x\(\in\){510;680;850}
4)Vì x chia hết cho 39, x chia hết cho 65, x chia hết cho 91\(\Rightarrow\)x\(\in\)BC(39;65;91}
BCNN(39;65;91)=3.5.7.13=1365
BC(39;65;91)=B(1365)={0,1365;2730;4095;5460;...}
Vậy x={0;1365;2730;4095;5460;...}
a: \(18=3^2\cdot2;36=3^2\cdot2^2\)
=>\(BCNN\left(18;36\right)=3^2\cdot2^2=36\)
\(x⋮18;x⋮36\)
=>\(x\in BC\left(18;36\right)\)
=>\(x\in B\left(36\right)\)
mà x là số nhỏ nhất khác 0
nên x=36
b: \(25=5^2;45=5\cdot3^2\)
=>\(ƯCLN\left(25;45\right)=5\)
\(25⋮x;45⋮x\)
=>\(x\inƯC\left(25;45\right)\)
mà x là số lớn nhất khác 0
nên x=ƯCLN(25;45)
=>x=5
a: \(35=5\cdot7;105=3\cdot5\cdot7\)
=>\(ƯCLN\left(35;105\right)=35\)
\(35⋮x;105⋮x\)
=>\(x\inƯC\left(35;105\right)\)
mà x lớn nhất
nên x=ƯLCN(35;105)
=>x=35
b:
\(72=2^3\cdot3^2;54=3^3\cdot2\)
=>\(ƯCLN\left(72;54\right)=3^2\cdot2=18\)
\(72⋮x;54⋮x\)
=>\(x\inƯC\left(72;54\right)\)
=>\(x\inƯ\left(18\right)\)
=>\(x\in\left\{1;-1;2;-2;3;-3;6;-6;9;-9;18;-18\right\}\)
mà 10<x<20
nên x=18
c:
\(21=3\cdot7;35=5\cdot7;50=5^2\cdot2\)
=>\(BCNN\left(21;35;50\right)=5^2\cdot2\cdot3\cdot7=1050\)
\(x⋮21;x⋮35;x⋮50\)
=>\(x\in BC\left(21;35;50\right)\)
=>\(x\in B\left(1050\right)\)
mà x nhỏ nhất
nên x=1050
d:
\(39=3\cdot13;65=5\cdot13;26=2\cdot13\)
=>\(BCNN\left(39;65;26\right)=2\cdot3\cdot5\cdot13=390\)
\(x⋮39;x⋮65;x⋮26\)
=>\(x\in BC\left(39;65;26\right)\)
=>\(x\in B\left(390\right)\)
=>\(x\in\left\{390;780;1170;...\right\}\)
mà 100<=x<=999
nên \(x\in\left\{390;780\right\}\)
a, Vì : 24 \(⋮\)x , 36 \(⋮\)x , 160 \(⋮\)x và x lớn nhất
=> x = ƯCLN(24,36,160)
Ta có :
24 = 23 . 3
36 = 22 . 32
160 = 25 . 5
ƯCLN(24,36,160) = 22 = 4
Vậy x = 4
b, Vì 15 \(⋮\)x , 20 \(⋮\)x , 35 \(⋮\)x và x > 3
=> x \(\in\) ƯC(15,20,35)
Ư(15) = { 1;3;5;15 }
Ư(20) = { 1;2;4;5;10;20 }
Ư(35) = { 1;5;7;35 }
ƯC(15,20,35) = { 1;5 }
Mà : x > 3
=> x = 5
Vậy x = 5
c, Vì : 91 \(⋮\)x , 26 \(⋮\)x và 10 < x < 30
=> x \(\in\) ƯC(91,26)
Ư(91) = { 1;7;13;91 }
Ư(26) = { 1;2;13;26 }
ƯC(91,26) = { 1;13 }
Mà : 10 < x < 30
=> x = 13
Vậy x = 13
d, Vì : 10 \(⋮\)( 3x + 1 )
=> 3x + 1 \(\in\) Ư(10)
Mà : Ư(10) = { 1;2;5;10 }
=> 3x + 1 \(\in\) { 1;10 }
+) 3x + 1 = 1 => 3x = 0 => x = 0
+) 3x + 1 = 10 => 3x = 3 => x = 1
Vậy x \(\in\) { 0;1 }
+)Theo bài ta có:\(x⋮39;x⋮65;x⋮91;x\in N;400< x< 600\)
\(\Rightarrow x\in BC\left(39,65,91\right)\)
39=3.13 65=5.13 91=7.13
\(\Rightarrow BCNN\left(39,65,91\right)=3.5.7.13=1365\)
\(\Rightarrow BC\left(39,65,91\right)=B\left(1365\right)=\left\{0;1365;2730\right\}\)
\(\Rightarrow x\in\left\{0;1365;2730;..............\right\}\)
Mà 400<x<600
\(\Rightarrow x\in\varnothing\)
Vậy \(x\in\varnothing\)
Chúc bn học tốt
c, Ta có : a chia hết cho 36 , a chia hết cho 30 , a chia hết cho 20 => a thuộc BC(36,30,20)
Mà 36 = 2^2.3^2 30 = 2.3.5 20 = 2^2.5
=> BCNN(36,30,20) = 2^2.3^2.5 = 180
=> BC(36,30,20) = B(180) = { 0,180,360,.....}
Vì a nhỏ nhất khác 0 => a = 180
a, Giải
Ta có : 108 chia hết cho x, 180 chia hết cho x => x thuộc ƯC(180,108)
Mà 180 = 2^2.3^2.5 108 = 2^2.3^3
=> ƯCLN(108,180) = 2^2.3^2 = 36
=> ƯC(108,180) = Ư(36) = { 1,2,3,4,6,9,12, 18, 36 }
Vì x>15 => x thuộc { 18,36 }
k mk nha
a, 90 chia hết cho x => x ∈ Ư(90) = {1;2;3;5;6;9;10;15;18;30;45;90}
b, x chia hết cho 60 => x ∈ B(60) = {0;60;120;180;240;…} mà 59 < x < 180 => x ∈ {60;120;180}
c, x là số nhỏ nhất khác 0 và x chia hết cho cả 12 và 18 => x = BCNN(12;18)
12 = 2 2 . 3 ; 18 = 2 . 3 2 ; x = BCNN(12;18) = 2 2 . 3 2 = 4.9 = 36
a, tìm bcnn của 32, 35, 99
b, tìm bc của 39, 65, 91 trong khoảng từ 2000 đến 6000
nhấn đúng cho mk nha
>333333