K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2019

Để pt trên có nghiệm duy nhất thì ĐK là:

\(\frac{1}{m}\ne\frac{m}{-2}\)

\(\Leftrightarrow m^2\ne-2\left(luondung\right)\)

chắc vậy

5 tháng 4 2019

là sao Nguyenx công tỉnh

chả hiểu

cái này ko giải hẹ à

20 tháng 3 2020

mik sorry . mik ko biết

24 tháng 3 2020

\(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\mx-y=m^2-2\left(2\right)\end{cases}}\)

\(\left(2\right)\Rightarrow y=-m^2+2+mx\)

Thay (1) => \(\left(m+1\right)x+m\left(-m^2+2+mx\right)=2m-1\)

\(\Leftrightarrow\left(m^2+m+1\right)x-m^3+1=0\)

\(\Leftrightarrow x=\frac{m^3-1}{m^2+m+1}=m-1\)

\(\Rightarrow y=-m^2+2+m\left(m-1\right)=-m^2+2+m^2-m=2-m\)

Ta có: (m-1)(2-m)=-m2+3m-2=\(-\left(m-\frac{3}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu "=" <=> \(m=\frac{3}{2}\)

Vậy \(m=\frac{3}{2}\)hpt có nghiệm duy nhất

a, Khi \(m=-1\)ta có HPT : \(\hept{\begin{cases}-x+y=-2\\x-y=0\end{cases}}\)

=> HPT vô nghiệm

b, \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\\left(1-m^2\right)x=-2m^2+m+1\end{cases}}\)( * )

HPT vô nghiệm

<=> ( * ) vô nghiệm

\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-2m^2+m+1\end{cases}}\ne0\)

<=> m = 1 hoặc m = -1 mà m khác 1 và -1/2 

<=> m = -1

9 tháng 6 2021

Ta có: \(\hept{\begin{cases}2x+my=1\\mx+2y=1\end{cases}}\)

<=> \(\hept{\begin{cases}4x+2my=2\\m^2x+2my=m\end{cases}}\)

<=> \(4x-m^2x=2-m\)

<=> \(x\left(2-m\right)\left(m+2\right)=2-m\)

Để hpt có nghiệm duy nhất <=> 2 - m \(\ne\)0 <=> m \(\ne\)2

<=> \(x=\frac{2-m}{\left(2-m\right)\left(m+2\right)}=\frac{1}{m+2}\)

=> y = \(\frac{1-mx}{2}=\frac{1-m\cdot\frac{1}{m+2}}{2}=\frac{m+2-m}{2\left(m+2\right)}=\frac{1}{m+2}\)

Theo bài ra, ta có: \(x^2+y^2=\frac{1}{2}\) <=> \(\left(\frac{1}{m+2}\right)^2+\left(\frac{1}{m+2}\right)^2=\frac{1}{2}\)

<=> \(2\left(\frac{1}{m+2}\right)^2=\frac{1}{2}\)

<=> \(\left(\frac{1}{m+2}\right)^2=\frac{1}{4}\)

<=> \(\orbr{\begin{cases}\frac{1}{m+2}=\frac{1}{2}\\\frac{1}{m+2}=-\frac{1}{2}\end{cases}}\)

<=> \(\orbr{\begin{cases}m+2=2\\m+2=-2\end{cases}}\)

<=> \(\orbr{\begin{cases}m=0\\m=-4\end{cases}}\left(tm\right)\)

Vậy ....