1/5.8+1/8.11+....+1/y(y+3)=98/1545 tìm x,y
2x+7/6+13/12+21/20+31/30+43/42+57/56+73/72+91/90=10
1/2013.x+1+1/2+1/6+....+1/2012.2013=2
1+1/3+1/6+1/10+...+1/2012.2013=2
1/21+1/28+1/36+...+2/x(x+1)=2/9
ai nhanh mình tik cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x+1+\frac{1}{6}+1+\frac{1}{12}+..+1+\frac{1}{90}=10\)
=> 2x + 8 + \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=10\)
=> 2x + \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=10-8\)
\(2x+1-\frac{1}{10}=2\)
=> 2x + \(\frac{9}{10}=2\)
=> 2x = 2 - 9/10
=>2x = 11/10
=> x = 11/10 : 2
x = 11/20
1/
a) ta có \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{97.100}=\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)
\(=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}.\dfrac{99}{100}=\dfrac{33}{100}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33x}{2009}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33}{2009}.x\Rightarrow x=\dfrac{33}{100}:\dfrac{0,33}{2009}=2009\)
b,1 + 1/3 + 1/6 + 1/10 + ... + 2/x(x+1)=1 1991/1993
2 + 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 3984/1993
2.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/x(x+1) = 3984/1993
2.(1 − 1/2 + 1/2 − 1/3 + ... + 1/x − 1/x+1)=3984/1993
2.(1 − 1/x+1) = 3984/1993
1 − 1/x + 1= 3984/1993 :2
1 − 1/x+1 = 1992/1993
1/x+1 = 1 − 1992/1993
1/x+1=1/1993
<=>x+1 = 1993
<=>x+1=1993
<=> x+1=1993
<=> x = 1993-1
<=> x = 1992
2x+7/6+13/12+21/20+31/30+43/42+57/56+73/72+91/90=10
2x+1+1/6+1+1/12+1+1/20+1+1/30+1+1/42+1+1/56+1+1/72+1+1/90=10
2x+(1+1+1+1+1+1+1+1)+(1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10)=10
2x+8+(1-1/2+1/2-1/3+...+1/9-1/10)=10
2x+1-1/10=10-8
2x+9/10=2
2x=2-9/10
2x=11/10
x=11/10/2
x=11/20