Chứng minh rằng \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}< 1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)
\(< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)
\(< 1-\frac{1}{2016}< 1\left(đpcm\right)\)
<1/1.2+1/2.3+...+1/2015.2016=1-1/2+1/2-1/3+1/4-1/5+...+1/2015-1/2016-1-1/2016=2015/2016<1(đpcm)
đặt biểu thức trên =B ta có
2B= $\frac{1}{2}$+$\frac{1}{2^2}$+$\frac{1}{2^3}$+...+$\frac{1}{2^2015}$
2B-B=($\frac{1}{2}$+$\frac{1}{2^2}$+$\frac{1}{2^3}$+...+$\frac{1}{2^2015}$)-($\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2016}}$)
B=$\frac{1}{2}$-$\frac{1}{2^{2016}}$
B=$\frac{2^{2015}-1}{2^{2016}}$<1 điều phải chứng minh
\(\frac{1}{2^2}+\frac{1}{3^2}+..........+\frac{1}{2016^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{2015.2016}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....-\frac{1}{2016}\)
\(=1-\frac{1}{2016}=\frac{2015}{2016}<1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+........+\frac{1}{2016^2}<1\)
Ta có : \(\frac{1}{2^2}<\frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
.........................
\(\frac{1}{2016^2}<\frac{1}{2015.2016}=\frac{1}{2015}-\frac{1}{2016}\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}=1-\frac{1}{2016}<1\)
Bạn xem lại đề sai không chứ mình thấy biểu thức trên lớn hơn 0 cơ mà!!!
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2015.2016}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(=1-\frac{1}{2016}=\frac{2015}{2016}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}< \frac{2015}{2016}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}...+\frac{1}{2016}-\frac{1}{2017}\)
\(=\frac{1}{2}-\frac{1}{2017}=\frac{2015}{4024}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}>\frac{2015}{4034}\)
vậy ta có điều cần chứng minh
Bạn làm tương tự như thế này nhé! http://olm.vn/hoi-dap/question/72512.html
Ta có
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{2016^2}\)
\(\Rightarrow A< 1+\frac{1}{4}+\frac{1}{2.3}+......+\frac{1}{2015.2016}\)
\(\Rightarrow A< 1+\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2015}-\frac{1}{2016}\)
\(\Rightarrow A< 1\frac{3}{4}-\frac{1}{2016}< 1\frac{3}{4}\)
=> đpcm
Lời giải:
$B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}$
$2B=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2015}}$
Trừ theo vế:
$2B-B=1-\frac{1}{2^{2016}}$
$B=1-\frac{1}{2^{2016}}< 1$ (đpcm)
Ta có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}\)<\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2015.2016}\)(đoạn này bn tự làm đc ko nếu ko thì thi nhắn cho mk) =\(1-\frac{1}{2016}\)
Do \(1-\frac{1}{2016}< 1\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}< 1\)(đpcm)
Có 1/2^2+1/3^2+1/4^2+....+1/2016^2 <1/1.2+1/2.3+1/3.4+....+1/2015.2016(1)
Có 1/1.2+1/2.3+1/3.4+......+1/2015.2016
=1-1/2+1/2-1/3+1/3-1/4+........+1/2015-1/2016
=(-1/2+1/2)+(-1/3+1/3)+.........+(-1/2015+1/2015)+(1-1/2016)
=1-1/2016
=2016/2016-1/2016
=2015/2016(2)
Từ (1) và (2)
Suy ra 1/2^2+1/3^2+1/4^2+........+1/2016^2 <1
Đây là đpcm