K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

Tìm điều kiện để hàm số y=(m-1)x+2laf hàm số bậc nhất 

Bảo e với ạ

27 tháng 3 2018

Ngữ Văn lớp 9 hả?

a: Để hàm số y=(m-2)x+m+3 nghịch biến trên R thì m-2<0

=>m<2

b: Thay x=3 và y=0 vào y=(m-2)x+m+3, ta được:

\(3\left(m-2\right)+m+3=0\)

=>3m-6+m+3=0

=>4m-3=0

=>4m=3

=>\(m=\dfrac{3}{4}\)

c: Tọa độ giao điểm của hai đường thẳng y=-x+2 và y=2x-1 là:

\(\left\{{}\begin{matrix}2x-1=-x+2\\y=-x+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=3\\y=-x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1+1=0\end{matrix}\right.\)

Thay x=1 và y=0 vào y=(m-2)x+m+3, ta được:

\(1\left(m-2\right)+m+3=0\)

=>m-2+m+3=0

=>2m+1=0

=>2m=-1

=>\(m=-\dfrac{1}{2}\)

12 tháng 12 2023

a: Để hàm số đồng biến trên R thì \(m^2-4>0\)

=>\(m^2>4\)

=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)

b: Để hàm số nghịch biến trên R thì \(m^2-4< 0\)

=>\(m^2< 4\)

=>-2<m<2

12 tháng 12 2023

a) Hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 đồng biến

⇔ 3m - 1 > 0

⇔ 3m > 1

⇔ m > 1313 

Vậy m > 1313 thì hàm số y = (3m - 1)x + 2 đồng biến

b) Hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 nghịch biến

⇔ 3m - 1 < 0

⇔ 3m < 1

⇔ m < 1313 

Vậy m < 1313 thì hàm số y = (3m - 1)x + 2 nghịch biến

c) Đồ thị hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 đi qua điểm A(2; 3) nên thay x = 2; y = 3 vào hàm số y = (3m - 1)x + 2 ta được:

3 = (3m - 1).2 + 2 (m ≠≠ 1313)

⇔ 3 = 6m - 2 + 2

⇔ 3 = 6m

⇔ m = 1212 (t/m)

Vậy m =  1212 thì đồ thị hàm số y = (3m - 1)x + 2 đi qua điểm A(2; 3)

NV
8 tháng 7 2021

a.

Hàm số đồng biến trên R khi và chỉ khi:

\(\left\{{}\begin{matrix}7-m\ge0\\\sqrt{7-m}-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le7\\m< 6\end{matrix}\right.\) \(\Leftrightarrow m< 6\)

b. Để hàm nghịch biến trên R

\(\Leftrightarrow m^2+m+1< 0\)

\(\Leftrightarrow\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}< 0\) (vô lý)

Vậy ko tồn tại m thỏa mãn yêu cầu

13 tháng 7 2021

cảm ơn tất cả mọi người,đấy là bài cuối của tuần này rồi

12 tháng 11 2023

a: Để hàm số nghịch biến trên R thì m-2<0

=>m<2

b: Thay x=-3 và y=0 vào (d), ta được:

-3(m-2)+m+3=0

=>-3m+6+m+3=0

=>-2m+9=0

=>-2m=-9

=>\(m=\dfrac{9}{2}\)

c: Tọa độ giao điểm của y=-x+2 và y=2x-1 là:

\(\left\{{}\begin{matrix}2x-1=-x+2\\y=-x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\y=-x+2\end{matrix}\right.\)

=>x=1 và y=-1+2=1

Thay x=1 và y=1 vào (d), ta được:

m+2+m+3=1

=>2m+5=1

=>2m=-4

=>m=-4/2=-2

24 tháng 10 2021

a) Hàm số đồng biến trên R\(\Rightarrow a>0\Rightarrow m-2>0\Rightarrow m>2\)

b) Hàm số nghịch biến trên R

    \(\Leftrightarrow a< 0\Rightarrow m-2< 0\Rightarrow m< 2\)

28 tháng 11 2021

\(a,\Leftrightarrow\sqrt{\dfrac{m-2}{m+3}}>0\)

Mà \(\sqrt{\dfrac{m-2}{m+3}}\ge0\Leftrightarrow\sqrt{\dfrac{m-2}{m+3}}\ne0\Leftrightarrow m\ne2;m\ne-3\)

\(b,y=m^2x-5mx-6m=x\left(m^2-5m\right)-6m\)

Đồng biến \(\Leftrightarrow m^2-5m>0\Leftrightarrow m\left(m-5\right)>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>5\end{matrix}\right.\)

\(c,y=x\left(\dfrac{m+5}{m-2}-1\right)+\sqrt{m-2}=\dfrac{7}{m-2}x+\sqrt{m-2}\)

Đồng biến \(\Leftrightarrow\dfrac{7}{m-2}>0\Leftrightarrow m-2>0\Leftrightarrow m>2\)

27 tháng 10 2023

a: Để hàm số đồng biến thì m-2>0

=>m>2

b: Để hàm số nghịch biến thì m-2<0

=>m<2

15 tháng 12 2022

a: Để hàm số nghịch biên thì m-2<0

=>m<2

b: Thay x=3 và y=0 vào (d), ta đc:

3(m-2)+m+3=0

=>3m-6+m+3=0

=>4m-3=0

=>m=3/4

c: Tọa độ giao điểm là

2x-1=-x+2 và y=-x+2

=>x=1 và y=1

Thay x=1 và y=1 vào (d), ta được:

m-2+m+3=1

=>2m+1=1

=>m=0

24 tháng 9 2023

a) \(y=\left(m+2\sqrt{m}+1\right)x-10\) là hàm số đồng biến khi: \(\left(m\ge0\right)\)

\(m+2\sqrt{m}+1>0\) 

\(\Leftrightarrow\left(\sqrt{m}+1\right)^2>0\) (luôn đúng) 

Nên hàm số này luôn là hàm số đồng biến với \(m\ge3\)

b) \(y=\left(\sqrt{m}-3\right)x+2\) là hàm số nghịch biến khi: \(\left(m\ge0\right)\) 

\(\sqrt{m}-3< 0\)

\(\Leftrightarrow\sqrt{m}< 3\)

\(\Leftrightarrow m< 9\) 

\(\Leftrightarrow0\le m< 9\)