SO SÁNH
C= \(1\times3\times5\times7\times...\times99\) VOI D=\(\frac{51}{2}\times\frac{52}{2}\times\frac{53}{2}\times...\times\frac{100}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1=3/3=4/4=5/5=...
=> 1+1/1*3=3/1*3=1/1
=> 1+1/2*4=4/2*4=1/2
=>...
Bieu thuc se con lai la 1*1/2*1/3*1/4*1/5
Vay A=1/120
VÌ 1/1.1/3.......1/99=2/51.2/52.........2/100
VÀ 2/51.2/52.....2/100=1/1.1/3.......1/99
SUY RA BẰNG NHAU
\(M=\frac{1.2.3.4.5...98.99}{10}\)
\(M=1.2.3.4.5.6.7.8.9.11.12...98.99\)
\(A=\frac{1^2}{1\times2}\times\frac{2^2}{2\times3}\times\frac{3^2}{3\times4}\times\frac{4^2}{4\times5}\)
\(=\frac{1}{2}\times\frac{4}{6}\times\frac{9}{12}\times\frac{16}{20}\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\)
Gạch các số giống nhau của phép nhân đó là 2; 3; 4. Ta được kết quả bằng
\(=\frac{1}{5}\)
\(A=\frac{1}{2}\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)...\left(1+\frac{1}{2015\cdot2017}\right)\)\(A=\frac{1}{2}\left(\frac{1\cdot3+1}{1\cdot3}\right)\left(\frac{2\cdot4+1}{2\cdot4}\right)...\left(\frac{2015\cdot2017+1}{2015\cdot2017}\right)\)
\(A=\frac{1^2}{2}\cdot\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\cdot\cdot\frac{2016^2}{2015\cdot2017}\)
\(A=\frac{1^2\cdot2^2\cdot3^2\cdot\cdot\cdot2016^2}{2\cdot1\cdot3\cdot2\cdot4\cdot\cdot\cdot2015\cdot2017}\)
\(A=\frac{2016}{2017}\)
Bài làm
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{x.\left(x+2\right)}=\frac{2015}{2016}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2015}{2016}\)
\(1-\frac{1}{x+2}=\frac{2015}{2016}\)
\(\frac{1}{x+2}=\frac{1}{2016}\)
\(\Rightarrow x+2=2016\)
\(x=2014\)