Tính tổng của 2 đa thức
M = x3 + xy + y2 – x2y2 – 2 và N = x2y2 + 5 – y2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: M = x3 + xy + y2 – x2y2 – 2 và N = x2y2 + 5 – y2
⇒ M + N = (x3 + xy + y2 – x2y2 – 2) + (x2y2 + 5 – y2)
= x3 + xy + y2 – x2y2 – 2 + x2y2 + 5 – y2
= x3 + (– x2y2 + x2y2) + (y2 – y2) + xy + (– 2 + 5)
= x3 + 0 + 0 + xy + 3
= x3 + xy + 3.
\(x^2+y^2-x^2y^2+xy-x-y\)
\(=\left(x^2-x^2y^2\right)+\left(y^2-y\right)+\left(xy-x\right)\)
\(=x^2\left(y-1\right)\left(-1-y\right)+y\left(y-1\right)+x\left(y-1\right)\)
\(=\left(y-1\right)\left(-x^2-x^2y+y+x\right)\)
\(=\left(y-1\right)\left[-x\left(x-1\right)-y\left(x-1\right)\left(x+1\right)\right]\)
\(=\left(y-1\right)\left(x-1\right)\left(-x-xy-y\right)\)
chịu rùi
bài này khó quá nguyen truong giang
chúc bn học tốt
nhae$
hihi
x2 + y2 - x2y2 + xy - x - y
=(x2-x2y2)+(y2-y)+(xy-x)
=x2(1-y)(1+y)-y(1-y)-x(1-y)
=(1-y)(x2+x2y-x-y)
=(1-y)[(x2-y)+(x2-x)]
=(1-y)[y(x-1)(x+1)+x(x-1)]
=(1-y)(x-1)(xy+x+y)
a) (x - y)(x + y + 3). b) (x + y - 2xy)(2 + y + 2xy).
c) x 2 (x + l)( x 3 - x 2 + 2). d) (x – 1 - y)[ ( x - 1 ) 2 + ( x - 1 ) y + y 2 ].
Rút gọn đa thức M ta có :
M = x2 – 2xy + 5x2 – 1 = (x2+ 5x2) – 2xy – 1 = 6x2 – 2xy – 1
Sau khi rút gọn, M có các hạng tử là:
6x2 có bậc 2
– 2xy có bậc 2
– 1 có bậc 0
Bậc của đa thức là bậc của hạng tử có bậc cao nhất
⇒ Đa thức M = x2 – 2xy + 5x2 – 1 có bậc 2.
N = x2y2 – y2 + 5x2 – 3x2y + 5 có các hạng tử là
x2y2 có bậc 4 (vì biến x có bậc 2, biến y có bậc 2, tổng là 2 + 2 = 4)
– y2 có bậc 2
5x2 có bậc 2
– 3x2y có bậc 3 (vì biến x có bậc 2, biến y có bậc 1, tổng là 2 + 1 = 3)
5 có bậc 0
Bậc của đa thức là bậc của hạng tử có bậc cao nhất.
⇒ Đa thức N = x2y2 – y2 + 5x2 – 3x2y + 5 có bậc 4
Ta có: P = x2y + xy2 – 5x2y2 + x3 và Q = 3xy2 – x2y + x2y2
⇒ P + Q = (x2y + xy2 – 5x2y2 + x3) + (3xy2 – x2y + x2y2)
= x2y + xy2 – 5x2y2 + x3 + 3xy2 – x2y + x2y2
= x3 +(– 5x2y2 + x2y2)+ (x2y – x2y) + (xy2+ 3xy2)
= x3 – 4x2y2 + 0 + 4xy2
= x3 – 4x2y2 + 4xy2
(5x2y – 5xy2 + xy) + (xy – x2y2 + 5xy2)
= 5x2y – 5xy2 + xy + xy – x2y2 + 5xy2
= 5x2y + (5xy2 – 5xy2) + (xy + xy) – x2y2
= 5x2y + 2xy – x2y2
Ta có: M = x3 + xy + y2 – x2y2 – 2 và N = x2y2 + 5 – y2.
=> M + N = x3 + xy + y2 – x2y2 – 2 + x2y2 + 5 – y2
= x3 – x2y2 + x2y2 + y2 – y2 + xy - 2 + 5
= x3 + xy + 3.