Cho góc bẹt xOy . Trên cùng một nửa mặt phẳng bờ xy vẽ các tia Om , On . Sao cho xOm = a độ và yOn = 70 độ . Tìm giá trị của a để tia on là tia phân giác của yOn Help me , please . Tick nhah
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để On là phân giác của góc yOm thì \(\widehat{yOn}=\dfrac{1}{2}\widehat{yOm}\)
=>\(\widehat{yOm}=140^0\)
=>\(a=180^0-140^0=40^0\)
Đáp án là D
Vì tia On là tia phân giác của ∠yOm nên ∠yOm = 2.∠yOn = 2. 70 0 = 140 0
Lại có xOy là góc bẹt nên ∠xOm và ∠yOm là hai góc kề bù
Vậy a = 40 0
a) Vì ˆxOyxOy^ là góc bẹt
⇒ Ox và Oy là 2 tia đối nhau
⇒ Tia On nằm giữa 2 tia Ox và Oy
⇒ˆxOn+ˆyOn=ˆxOy
⇒ˆxOn+150o=180o
⇒ˆxOn=30o
Trên cùng 1 nửa mặt phẳng bờ xy, ta có:
ˆxOn<ˆxOm(30o<60o)
⇒ Tia On nằm giữa 2 tia Ox và Om
⇒ˆxOn+ˆmOn=ˆxOm
⇒30o+ˆmOn=60o
⇒ˆmOn=30o
b) Ta có: ˆxOn=ˆmOn(=30o)
Lại có: Tia On nằm giữa 2 tia Ox và Om
⇒ Tia On là tia phân giác của ˆxOm
Bài làm
Ta có: \(\widehat{xOy}=\widehat{xOm}+\widehat{yOn}+\widehat{mOz}+\widehat{zOn}\)
Mà \(\widehat{xOm}=\widehat{yOn}=2\widehat{xOm}\)
Oz là tia phân giác của \(\widehat{mOn}\)
=> \(\widehat{mOz}=\widehat{zOn}=2\widehat{mOz}\)
=> \(\widehat{xOy}=2\widehat{xOm}+2\widehat{mOz}\)
Hay \(180^0=2\widehat{xOm}+2\widehat{mOz}\)
=> \(180^0=2(\widehat{xOm}+\widehat{mOz})\)
=> \(\widehat{xOm}+\widehat{mOz}=180^0:2\)
=> \(\widehat{xOm}+\widehat{mOz}=90^0\)
Hay \(\widehat{xOz}=90^0\)
=> \(Oz\perp xy\)
Vậy \(Oz\perp xy\)( đpcm )
# Học tốt #
\(A)\)
\(B)\)
Theo đề ra: Góc xOy là góc bẹt => Góc xOy = 180 độ
Góc xOm = 60 độ
=> Góc xOy > góc xOm => Tia Om nằm giữa hai tia Ox và Oy
Ta có: mOy = xOy - xOm
mOy = 180 độ - 60 độ
mOy = 120 độ
Ta có: mOn = yOn - mOy
mOn = 150 độ - 120 độ
mOn = 30 độ
\(C)\)
Ta có: xOn = xOm - mOn
xOn = 60 độ - 30 độ
xOn = 30 độ
=> Góc xOn = góc mOn
=> Tia On là tia phân giác của góc xOm