K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

1.  Xét tam giác ABD có MI // AB nên theo định lý Talet ta có:

\(\frac{MI}{AB}=\frac{DI}{DB}\)

Xét tam giác ABC có NI // AB nên theo định lý Talet ta có:

\(\frac{NI}{AB}=\frac{NC}{BC}\)

2. Xét tam giác BDC có IN // DC nên \(\frac{DI}{DB}=\frac{NC}{BC}\)

Từ đó ta có: \(\frac{MI}{AB}=\frac{NI}{AB}\Rightarrow MI=IN\)

Vậy I là trung điểm MN (đpcm)

1 tháng 4 2018

Khó thế ai làm được hả bạn Toàn!😢😢😢😢😢

a: Xét ΔIAB và ΔICD có

góc IAB=góc ICD

góc AIB=góc CID

=>ΔIAB đồng dạng với ΔICD

=>IA/IC=IB/ID

=>AI/AC=BI/BD

b: Xét ΔADC có MI//DC

nên MI/DC=AI/AC

Xét ΔBDC có NI//DC

nên NI/DC=BI/BD

=>MI/DC=NI/DC

=>MI=NI

18 tháng 7 2023

A B C D O M N P Q

a/

Ta có

MN//AB (gt)

AD//BC=> AM//BN

=> AMNB là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Ta có

AB//CD => AP//CQ mà AP = CQ (gt) => APCQ là hbh (Tứ giác có cặp cạnh đối // và = nhau là hbh)

b/

Xét hbh ABCD 

OA=OC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Xét hbh APCQ có

IA=IC  (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

=> \(I\equiv O\) (đều là trung điểm AC) => M; N; I thẳng hàng

c/ Do \(I\equiv O\) (cmt) => AC; MN; PQ đồng quy tại O

https://h.vn/hoi-dap/tim-kiem?q=cho+h%C3%ACnh+thang+ABCD+%28AB%2F%2FCD%29.+C%C3%B3+AC+c%E1%BA%AFt+BD+t%E1%BA%A1i+I.+%C4%90%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+qua+I+v%C3%A0+song+song+c%E1%BB%9Bi+hai+%C4%91%C3%A1y+c%E1%BA%AFt+AD+v%C3%A0+BC+l%E1%BA%A7n+l%C6%B0%E1%BB%A3t+%E1%BB%9F+M+v%C3%A0+N.+Ch%E1%BB%A9ng+Minh+%3A+1%29+MI%2FAB+%3DCN%2FCB+.+2%29+MI%3DIN&subject=0

k bt lm nhờ mạng giải giùm nên thông cảm cho nha ng ae

a:Xét hình thang ABCD có 

M là trung điểm của AD

MN//AB//CD

Do đó: N là trung điểm của BC

Xét ΔDAB có 

M là trung điểm của AD

ME//AB

Do đó: E là trung điểm của BD

Xét ΔABC có 

N là trung điểm của BC

NF//AB

Do đó: F là trung điểm của AC

24 tháng 10 2021

SGK k để lm cảnh, lên Tech12 hoặc Vietjack

24 tháng 10 2021

a: Xét hình thang ABCD có 

M là trung điểm của AD

MN//AB//CD

Do đó: N là trung điểm của BC

Xét ΔADC có 

M là trung điểm của AD

MF//DC

Do đó: F là trung điểm của AC

Xét ΔBDC có 

N là trung điểm của BC

NE//DC

Do đó: E là trung điểm của BD