Tìm các số tự nhiên x và y biết \(24-6|x-10|=9\left(2018-y\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x+5)+(x+10)+.........+(x+60)=450
12x +(5+10+.........+60)=450
12x+390=450
12x=60
x=5
b) Gọi n là thương của phép chia a cho 54; =>54n+38=252+r =>r-2 chia hết cho 54
r là dư của phép chia a cho 18 (n,r thuộc N;r<14) =>54n =214+r =>r-2=0
=>a=54n + 38 =>n=(214+r):54 =>r =2
a=18x14+r =>214+r chia hết cho 54 =>a=18x14+2=254
=>54n+38=18x14+r =>216+r-2 chia hết cho 54
\(4x+2y+2z-4\sqrt{xy}-4\sqrt{xz}+2\sqrt{yz}-10\sqrt{z}-6\sqrt{y}+34=0\)
\(\Rightarrow\left(4x-4\sqrt{xy}-4\sqrt{xz}+y+z+2\sqrt{yz}\right)+\left(y-6\sqrt{y}+9\right)+\left(z-10\sqrt{z}+25\right)=0\)
\(\Rightarrow\left(2\sqrt{x}-\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-5\right)^2+\left(\sqrt{y}-3\right)^2=0\)
\(\hept{\begin{cases}\left(2\sqrt{x}-\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{y}-3\right)^2=0\\\left(\sqrt{z}-5\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16\\y=9\\z=25\end{cases}}\)
Thay vào M,ta được
\(M=\left(16-15\right)^9+\left(9-8\right)^6+\left(25-24\right)^{2018}=3\)
Hình như đề phải là \(\left(z-24\right)^{2018}\)
do y>x>0 => \(5^y>5\Rightarrow5^y⋮5\)
Mặt khác, \(2^x,2^x+1,2^x+2,2^x+3,2^x+4\)là 5 số tự nhiên liên tiếp và \(2^x\)không tận cùng bằng 0
=> \(2^x\)+1 hoặc \(2^x\)+3 chia hết cho 5
=> VT \(⋮\)5
Mà 11879 không chia hết cho 5
=> không tồn tại x,y thỏa mãn
Ta có
\(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y=11879\)
\(\Leftrightarrow\left(2^{2x}+5\times2^x+4\right)\left(2^{2x}+5\times2^x+6\right)=11879+5^y\)
\(\Leftrightarrow\left(2^{2x}+5\times2^x+5\right)^2=11880+5^y\)
Với y = 0 thì
\(2^{2x}+5\times2^x+5=109\)
\(\Leftrightarrow2^x=8\)
\(\Leftrightarrow x=3\)
Với \(y\ge1\)thì vế trái không chia hết cho 5 còn vế phải chia hết cho 5 nên không tồn tại (x, y) thỏa cái đó
Vậy có duy nhất 1 cặp nghiệm tự nhiên là (x, y) = (3, 0)
Đặt A=(2^x+1)(2^x+2)(2^x+3)(2^x+4), ta có 2^x.A là tích của 5 số tự nhiên liên tiếp nên chia hết cho 5. Nhưng 2^x không chia hết cho 5, do đó A chia hết cho 5.
Nếu y>=1 ta có (2^x+1)(2^x+2)(2^x+3)(2^x+4)-5^y chia hết cho 5 mà 11879 không chia hết cho 5 nên y>=1 không thỏa mãn
=>y=0
Khi đó ta có (2^x+1)(2^x+2)(2^x+3)(2^x+4)-5^y=11879
<=> (2^x+1)(2^x+2)(2^x+3)(2^x+4)-1=11879
<=> (2^x+1)(2^x+2)(2^x+3)(2^x+4)=11880
<=> (2^x+1)(2^x+2)(2^x+3)(2^x+4)=9.10.11.12
=>x=3
Vậy x=3 và y=0