Tìm GTLN của biểu thức A = |2x+7| - |2x-3|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x-2x^2-3\)
\(\Leftrightarrow A=-2x^2+2x-3\)
\(\Leftrightarrow A=-2\left(x^2-x+\frac{3}{2}\right)\)
\(\Leftrightarrow A=-2\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}+\frac{3}{2}\right)\)
\(\Leftrightarrow A=-2[\left(x-\frac{1}{2}\right)^2+\frac{5}{4}]\)
\(\Leftrightarrow A=-2\left(x-\frac{1}{2}\right)^2-\frac{5}{2}\)
\(\Leftrightarrow A=\frac{-5}{2}-2\left(x-\frac{1^2}{2}\right)\)
\(MaxA=\frac{-5}{2}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
`-2<=x<=2`
`<=>x+2>=0,x-2<=0`
`=>(x+2)(x-2)<=0`
`<=>x^2-4<=0`
`<=>x^2<=4`
`=>A<=4-2x+7=11-2x`
Vì `x>=-2=>2x>=-4`
`=>A<=11+4=15`
Dấu "=" xảy ra khi `x=-2
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Tìm GTLN:
\(A=-x^2+6x-15\)
\(=-\left(x^2-6x+15\right)\)
\(=-\left(x^2-2.x.3+9+6\right)\)
\(=-\left(x+3\right)^2-6\le0\forall x\)
Dấu = xảy ra khi:
\(x-3=0\Leftrightarrow x=3\)
Vậy Amax = - 6 tại x = 3
Tìm GTNN :
\(A=x^2-4x+7\)
\(=x^2+2.x.2+4+3\)
\(=\left(x+2\right)^2+3\ge0\forall x\)
Dấu = xảy ra khi:
\(x+2=0\Leftrightarrow x=-2\)
Vậy Amin = 3 tại x = - 2
Các câu còn lại làm tương tự nhé... :)
A = 2(2x + 3)2 + 5
vì (2x + 3)2 ≥ 0 ∀ x ⇒ 2(2x +3)2 + 5 ≥ 5
A(min) = 5 ⇒ x = - \(\dfrac{3}{2}\)
1: (5x+3)^2>=0
=>2(5x+3)^2>=0
=>A<=6
Dấu = xảy ra khi x=-3/5
2: (x+9)^2+10>=10
=>B<=13/10
Dấu = xảy ra khi x=-9
3: -3(2x-1)^2<=0
=>-3(2x-1)^2-7<=-7
Dấu = xảy ra khi x=1/2
\(A=\frac{3}{2x^2+2x+3}=\frac{3}{2x^2+2x+\frac{1}{2}+\frac{5}{2}}\)
\(=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
Nên GTLN của A là \(\frac{6}{5}\) khi \(x=-\frac{1}{2}\)
Ta có: \(A=\frac{3}{2x^2+2x+3}\)
\(A=\frac{3}{2x^2+2x+\frac{1}{2}+\frac{5}{2}}\)
\(A=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}\)
\(A=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}\)
\(A=\frac{6}{5}\)
Nên GTLN của A là \(\frac{6}{5}\) khi \(x=-\frac{1}{2}\)
Bài này chỉ tìm được GTLN thôi nhé bạn.
Ta thấy \(A=-\dfrac{1}{3}x^2+2x\)
\(A=-\dfrac{1}{3}\left(x^2-6x\right)\)
\(A=-\dfrac{1}{3}\left(x^2-6x+9\right)+3\)
\(A=-\dfrac{1}{3}\left(x-3\right)^2+3\)
Vì \(\left(x-3\right)^2\ge0\) nên \(A\le3\) (dấu "=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)). Như vậy GTLN của A là 3, đạt được khi \(x=3\).
Áp dụng bất đẳng thức giá trị tuyệt đối sau: |a| - |b| \(\le\) |a + b|. Dấu "=" khi a.b \(\le\) 0
Ta có: A = |2x + 7| - |2x - 3| = |2x + 7|- |3 - 2x| \(\le\) |2x + 7 + 3 - 2x| = 10
Dấu "=" khi (2x+7). (3 - 2x) \(\le\) 0 => (2x +7).(2x - 3) \(\ge\) 0
mà 2x + 7 > 2x - 3 => 2x + 7 \(\le\) 0 hoặc 2x - 3 \(\ge\) 0 => x \(\le\) -7/2 hoặc x \(\ge\) 3/2
Vậy A lớn nhất = 10 khi x \(\le\) -7/2 hoặc x \(\ge\) 3/2
Bạn Nguyễn Thị Bích Phương làm sai rồi.