K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2018

1, 

\(\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{2017}+1\right)\)

\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{2018}{2017}\)

\(=\frac{2018}{2}=1009\)

2,

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2018}-1\right)\)

\(=\frac{-1}{2}\cdot\frac{-2}{3}\cdot\frac{-3}{4}\cdot...\cdot\frac{-2017}{2018}\)

\(=\frac{-1\cdot2017}{2018}=\frac{-2017}{2018}\)

19 tháng 5 2020

thật sự mị ko biết

19 tháng 5 2020

B=1,59(285714)

HOK TỐT

3 tháng 4 2022

a) C1

 \(\dfrac{1}{8}\times\dfrac{5}{6}+\dfrac{5}{6}\times\dfrac{2}{3}=\dfrac{5}{6}\times\left(\dfrac{1}{8}+\dfrac{2}{3}\right)=\dfrac{5}{6}\times\dfrac{19}{24}=\dfrac{95}{144}\)

   C2

\(\dfrac{1}{8}\times\dfrac{5}{6}+\dfrac{5}{6}\times\dfrac{2}{3}=\dfrac{5}{48}+\dfrac{10}{18}=\dfrac{95}{144}\)

b) C1

  \(\dfrac{7}{5}\times\dfrac{3}{4}-\dfrac{1}{2}\times\dfrac{3}{4}=\dfrac{3}{4}\times\left(\dfrac{7}{5}-\dfrac{1}{2}\right)=\dfrac{3}{4}\times\dfrac{9}{10}=\dfrac{27}{40}\)

    C2 

   \(\dfrac{7}{5}\times\dfrac{3}{4}-\dfrac{1}{2}\times\dfrac{3}{4}=\dfrac{21}{20}-\dfrac{3}{8}=\dfrac{27}{40}\)

c) C1

 \(\left(\dfrac{5}{6}+\dfrac{5}{8}\right)\times\dfrac{2}{3}=\dfrac{35}{24}\times\dfrac{2}{3}=\dfrac{35}{36}\)

  C2 

  \(\left(\dfrac{5}{6}+\dfrac{5}{8}\right)\times\dfrac{2}{3}=\left(\dfrac{5}{6}\times\dfrac{2}{3}\right)+\left(\dfrac{5}{8}\times\dfrac{2}{3}\right)=\dfrac{5}{9}+\dfrac{5}{12}=\dfrac{35}{36}\)

3 tháng 4 2022

bạn ơi có đúng ko bạn

1 tháng 8 2017

Ta có : (x- 1)- (x+ x+ 1)(x- 1) = 0

=> (x2 - 1)[(x- 1)2 -  (x+ x+ 1)] = 0

<=> (x2 - 1)(x4 - 2x2 + 1 - x- x2 - 1) = 0

<=>  (x2 - 1)(-3x2) = 0

\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\-3x^2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=1\\x^2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1;1\\x=0\end{cases}}\)

1 tháng 8 2017

pt đã cho \(\Leftrightarrow\left(x^2-1\right)\left(x^4-2x^2+1-x^4-x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(-3x^2\right)=0\) \(\Leftrightarrow\orbr{\begin{cases}x=+-1\\x=0\end{cases}}\)

Kl: x= +-1 ; x=0

8 tháng 7 2019

a) \(\left(x-5\right)^{12}=\left(x-5\right)^{10}\)

\(\Rightarrow\left(x-5\right)^{12}-\left(x-5\right)^{10}=0\)

\(\Rightarrow\left(x-5\right)^{10}\left[\left(x-5\right)^2-1\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0\\\left(x-5\right)^2-1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0^{10}\\\left(x-5\right)^2=0+1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\\left(x-5\right)^2=1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0+5\\\left(x-5\right)^2=1^2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=5\\x-5=\pm1\end{cases}}\)

\(\Rightarrow x=5;\orbr{\begin{cases}x-5=1\\x-5=-1\end{cases}}\)

\(\Rightarrow x=5;\orbr{\begin{cases}x=1+5\\x=-1+5\end{cases}}\)

\(\Rightarrow x=5;\orbr{\begin{cases}x=4\\x=6\end{cases}}\)

Vậy x = 4 hoặc x = 5 hoặc x = 6 

\(a)\left(x-5\right)^{12}=\left(x-5\right)^{10}\)

\(\Leftrightarrow\left(x-5\right)^{12}-\left(x-5\right)^{10}=0\)

\(\Leftrightarrow\left(x-5\right)^{10}\left[\left(x-5\right)^2-1\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0\\\left(x-5\right)^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\\left(x-4\right)\left(x-6\right)=0\end{cases}}\)

[  ra \(\left(x-4\right)\left(x-6\right)\)do \(\left(x-5\right)^2-1=\left(x-5-1\right)\left(x-5+1\right)=\left(x-6\right)\left(x-4\right)\)]

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4;x=6\end{cases}}\)

_Minh ngụy_

26 tháng 7 2023

\(S=1+2+...+2^{2017}\)

\(2S=2+2^2+...+2^{2018}\)

\(2S-S=2+2^2+...+2^{2018}-1-2-...-2^{2017}\)

\(S=2^{2018}-1\)

\(S=3+3^2+...+3^{2017}\)

\(3S=3^2+3^3+...+3^{2018}\)

\(3S-S=3^2+3^3+...+3^{2018}-3-3^2-...-3^{2017}\)

\(2S=3^{2018}-3\)

\(S=\dfrac{3^{2018}-3}{2}\)

\(S=4+4^2+...+4^{2017}\)

\(4S=4^2+4^3+...+4^{2018}\)

\(4S-S=4^2+4^3+...+4^{2018}-4-4^2-...-4^{2017}\)

\(3S=4^{2018}-4\)

\(S=\dfrac{4^{2018}-4}{3}\)

\(S=5+5^2+...+5^{2017}\)

\(5S=5^2+5^3+...+5^{2018}\)

\(5S-S=5^2+5^3+...+5^{2018}-5-5^2-...-5^{2017}\)

\(4S=5^{2018}-5\)

\(S=\dfrac{5^{2018}-5}{4}\)

a) S=1+2+22+...+22017

=> 2S=2.(1+2+22+...+22017)

=>2S=2+22+23+...+22018

=>S=(2+22+23+ ..+22018) - (1+2+22+ ....+22017 )

=> S =22018-1

 

12 tháng 6 2018

+)   (5x-1). (2x+3)-3. (3x-1)=0

10x^2+15x-2x-3 - 9x+3=0

10x^2 +8x=0

2x(5x+4)=0

=> x=0 hoặc x= -4/5

+)    x^3 (2x-3)-x^2 (4x^2-6x+2)=0

2x^4 -3x^3 -4x^4 + 6x^3 - 2x^2=0

-2x^4 + 3x^3-2x^2=0

x^2(-2x^2+x-2)=0

-2x^2(x-1)^2=0

=> x=0 hoặc x=1

+)   x (x-1)-x^2+2x=5

x^2 -x -x^2+2x=5

x=5

+)     8 (x-2)-2 (3x-4)=25

8x - 16-6x+8=25

2x=33

x=33/2