Tính ( càng nhanh càng tốt )
Bài 1 :
1, ( 1/2 + 1 ) . ( 1/3 + 1 ) . ( 1/4 + 1 ) . ( 1/5 + 1 ) x .. x ( 1/2017 + 1 )
2, ( 1/2 - 1 ) . ( 1/3 - 1 ) . ( 1/4 - 1 ) x ... x ( 1/2018 - 1 ) !!
Ai nhanh tíck hạn chót sáng mai !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) C1
\(\dfrac{1}{8}\times\dfrac{5}{6}+\dfrac{5}{6}\times\dfrac{2}{3}=\dfrac{5}{6}\times\left(\dfrac{1}{8}+\dfrac{2}{3}\right)=\dfrac{5}{6}\times\dfrac{19}{24}=\dfrac{95}{144}\)
C2
\(\dfrac{1}{8}\times\dfrac{5}{6}+\dfrac{5}{6}\times\dfrac{2}{3}=\dfrac{5}{48}+\dfrac{10}{18}=\dfrac{95}{144}\)
b) C1
\(\dfrac{7}{5}\times\dfrac{3}{4}-\dfrac{1}{2}\times\dfrac{3}{4}=\dfrac{3}{4}\times\left(\dfrac{7}{5}-\dfrac{1}{2}\right)=\dfrac{3}{4}\times\dfrac{9}{10}=\dfrac{27}{40}\)
C2
\(\dfrac{7}{5}\times\dfrac{3}{4}-\dfrac{1}{2}\times\dfrac{3}{4}=\dfrac{21}{20}-\dfrac{3}{8}=\dfrac{27}{40}\)
c) C1
\(\left(\dfrac{5}{6}+\dfrac{5}{8}\right)\times\dfrac{2}{3}=\dfrac{35}{24}\times\dfrac{2}{3}=\dfrac{35}{36}\)
C2
\(\left(\dfrac{5}{6}+\dfrac{5}{8}\right)\times\dfrac{2}{3}=\left(\dfrac{5}{6}\times\dfrac{2}{3}\right)+\left(\dfrac{5}{8}\times\dfrac{2}{3}\right)=\dfrac{5}{9}+\dfrac{5}{12}=\dfrac{35}{36}\)
Ta có : (x2 - 1)3 - (x4 + x2 + 1)(x2 - 1) = 0
=> (x2 - 1)[(x2 - 1)2 - (x4 + x2 + 1)] = 0
<=> (x2 - 1)(x4 - 2x2 + 1 - x4 - x2 - 1) = 0
<=> (x2 - 1)(-3x2) = 0
\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\-3x^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=1\\x^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1;1\\x=0\end{cases}}\)
a) \(\left(x-5\right)^{12}=\left(x-5\right)^{10}\)
\(\Rightarrow\left(x-5\right)^{12}-\left(x-5\right)^{10}=0\)
\(\Rightarrow\left(x-5\right)^{10}\left[\left(x-5\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0\\\left(x-5\right)^2-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0^{10}\\\left(x-5\right)^2=0+1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\\left(x-5\right)^2=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0+5\\\left(x-5\right)^2=1^2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x-5=\pm1\end{cases}}\)
\(\Rightarrow x=5;\orbr{\begin{cases}x-5=1\\x-5=-1\end{cases}}\)
\(\Rightarrow x=5;\orbr{\begin{cases}x=1+5\\x=-1+5\end{cases}}\)
\(\Rightarrow x=5;\orbr{\begin{cases}x=4\\x=6\end{cases}}\)
Vậy x = 4 hoặc x = 5 hoặc x = 6
\(a)\left(x-5\right)^{12}=\left(x-5\right)^{10}\)
\(\Leftrightarrow\left(x-5\right)^{12}-\left(x-5\right)^{10}=0\)
\(\Leftrightarrow\left(x-5\right)^{10}\left[\left(x-5\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0\\\left(x-5\right)^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\\left(x-4\right)\left(x-6\right)=0\end{cases}}\)
[ ra \(\left(x-4\right)\left(x-6\right)\)do \(\left(x-5\right)^2-1=\left(x-5-1\right)\left(x-5+1\right)=\left(x-6\right)\left(x-4\right)\)]
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4;x=6\end{cases}}\)
_Minh ngụy_
\(S=1+2+...+2^{2017}\)
\(2S=2+2^2+...+2^{2018}\)
\(2S-S=2+2^2+...+2^{2018}-1-2-...-2^{2017}\)
\(S=2^{2018}-1\)
\(S=3+3^2+...+3^{2017}\)
\(3S=3^2+3^3+...+3^{2018}\)
\(3S-S=3^2+3^3+...+3^{2018}-3-3^2-...-3^{2017}\)
\(2S=3^{2018}-3\)
\(S=\dfrac{3^{2018}-3}{2}\)
\(S=4+4^2+...+4^{2017}\)
\(4S=4^2+4^3+...+4^{2018}\)
\(4S-S=4^2+4^3+...+4^{2018}-4-4^2-...-4^{2017}\)
\(3S=4^{2018}-4\)
\(S=\dfrac{4^{2018}-4}{3}\)
\(S=5+5^2+...+5^{2017}\)
\(5S=5^2+5^3+...+5^{2018}\)
\(5S-S=5^2+5^3+...+5^{2018}-5-5^2-...-5^{2017}\)
\(4S=5^{2018}-5\)
\(S=\dfrac{5^{2018}-5}{4}\)
a) S=1+2+22+...+22017
=> 2S=2.(1+2+22+...+22017)
=>2S=2+22+23+...+22018
=>S=(2+22+23+ ..+22018) - (1+2+22+ ....+22017 )
=> S =22018-1
+) (5x-1). (2x+3)-3. (3x-1)=0
10x^2+15x-2x-3 - 9x+3=0
10x^2 +8x=0
2x(5x+4)=0
=> x=0 hoặc x= -4/5
+) x^3 (2x-3)-x^2 (4x^2-6x+2)=0
2x^4 -3x^3 -4x^4 + 6x^3 - 2x^2=0
-2x^4 + 3x^3-2x^2=0
x^2(-2x^2+x-2)=0
-2x^2(x-1)^2=0
=> x=0 hoặc x=1
+) x (x-1)-x^2+2x=5
x^2 -x -x^2+2x=5
x=5
+) 8 (x-2)-2 (3x-4)=25
8x - 16-6x+8=25
2x=33
x=33/2
1,
\(\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{2017}+1\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{2018}{2017}\)
\(=\frac{2018}{2}=1009\)
2,
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2018}-1\right)\)
\(=\frac{-1}{2}\cdot\frac{-2}{3}\cdot\frac{-3}{4}\cdot...\cdot\frac{-2017}{2018}\)
\(=\frac{-1\cdot2017}{2018}=\frac{-2017}{2018}\)