Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+...+2^{2017}\)
\(2S=2+2^2+...+2^{2018}\)
\(2S-S=2+2^2+...+2^{2018}-1-2-...-2^{2017}\)
\(S=2^{2018}-1\)
\(S=3+3^2+...+3^{2017}\)
\(3S=3^2+3^3+...+3^{2018}\)
\(3S-S=3^2+3^3+...+3^{2018}-3-3^2-...-3^{2017}\)
\(2S=3^{2018}-3\)
\(S=\dfrac{3^{2018}-3}{2}\)
\(S=4+4^2+...+4^{2017}\)
\(4S=4^2+4^3+...+4^{2018}\)
\(4S-S=4^2+4^3+...+4^{2018}-4-4^2-...-4^{2017}\)
\(3S=4^{2018}-4\)
\(S=\dfrac{4^{2018}-4}{3}\)
\(S=5+5^2+...+5^{2017}\)
\(5S=5^2+5^3+...+5^{2018}\)
\(5S-S=5^2+5^3+...+5^{2018}-5-5^2-...-5^{2017}\)
\(4S=5^{2018}-5\)
\(S=\dfrac{5^{2018}-5}{4}\)
a) S=1+2+22+...+22017
=> 2S=2.(1+2+22+...+22017)
=>2S=2+22+23+...+22018
=>S=(2+22+23+ ..+22018) - (1+2+22+ ....+22017 )
=> S =22018-1
a) \(\left(x-5\right)^{12}=\left(x-5\right)^{10}\)
\(\Rightarrow\left(x-5\right)^{12}-\left(x-5\right)^{10}=0\)
\(\Rightarrow\left(x-5\right)^{10}\left[\left(x-5\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0\\\left(x-5\right)^2-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0^{10}\\\left(x-5\right)^2=0+1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\\left(x-5\right)^2=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0+5\\\left(x-5\right)^2=1^2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x-5=\pm1\end{cases}}\)
\(\Rightarrow x=5;\orbr{\begin{cases}x-5=1\\x-5=-1\end{cases}}\)
\(\Rightarrow x=5;\orbr{\begin{cases}x=1+5\\x=-1+5\end{cases}}\)
\(\Rightarrow x=5;\orbr{\begin{cases}x=4\\x=6\end{cases}}\)
Vậy x = 4 hoặc x = 5 hoặc x = 6
\(a)\left(x-5\right)^{12}=\left(x-5\right)^{10}\)
\(\Leftrightarrow\left(x-5\right)^{12}-\left(x-5\right)^{10}=0\)
\(\Leftrightarrow\left(x-5\right)^{10}\left[\left(x-5\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0\\\left(x-5\right)^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\\left(x-4\right)\left(x-6\right)=0\end{cases}}\)
[ ra \(\left(x-4\right)\left(x-6\right)\)do \(\left(x-5\right)^2-1=\left(x-5-1\right)\left(x-5+1\right)=\left(x-6\right)\left(x-4\right)\)]
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4;x=6\end{cases}}\)
_Minh ngụy_
\(a,x:\left(-\frac{15}{28}\right)=\frac{21}{35}\)
\(x=\frac{21}{35}\times\left(-\frac{15}{28}\right)\)
\(x=-\frac{9}{28}\)
\(b,x-\frac{1}{42}=-\frac{6}{7}\times\frac{5}{7}\)
\(x-\frac{1}{42}=-\frac{30}{49}\)
\(x=-\frac{30}{49}+\frac{1}{42}\)
\(x=-\frac{173}{294}\)
\(c,\left(x-\frac{3}{4}\right):\frac{7}{5}=-\frac{1}{4}\)
\(x-\frac{3}{4}=-\frac{1}{4}\times\frac{7}{5}\)
\(x-\frac{3}{4}=-\frac{7}{20}\)
\(x=-\frac{7}{20}+\frac{3}{4}\)
\(x=\frac{2}{5}\)
a)x:-15/28=21/35
x=21/35.-15/28
x=-9/28
b)x-1/42= -6/7.5/7
x-1/42= -6/7.5/7
x-1/42=-30/49
x=-30/49+1/42
x=-173/294
c)(x-3/4):7/5=-1/4
x-3/4=-1/4.7/5
x-3/4=-7/20
x=-7/20+3/4
x=2/5
có gì sai xin tha thứ giùm nha!
hi hi!!!
Ta có :
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)}=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+1-\frac{2}{x+1}=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(\frac{2}{x+1}=2-\frac{2003}{2005}\)
\(\Leftrightarrow\)\(\frac{2}{x+1}=\frac{2007}{2005}\)
\(\Leftrightarrow\)\(x+1=2:\frac{2007}{2005}\)
\(\Leftrightarrow\)\(x+1=\frac{4010}{2007}\)
\(\Leftrightarrow\)\(x=\frac{4010}{2007}-1\)
\(\Leftrightarrow\)\(x=\frac{2003}{2007}\)
Vậy \(x=\frac{2003}{2007}\)
Chúc bạn học tốt ~
1,
\(\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{2017}+1\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{2018}{2017}\)
\(=\frac{2018}{2}=1009\)
2,
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2018}-1\right)\)
\(=\frac{-1}{2}\cdot\frac{-2}{3}\cdot\frac{-3}{4}\cdot...\cdot\frac{-2017}{2018}\)
\(=\frac{-1\cdot2017}{2018}=\frac{-2017}{2018}\)