K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2018

1, 

\(\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{2017}+1\right)\)

\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{2018}{2017}\)

\(=\frac{2018}{2}=1009\)

2,

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2018}-1\right)\)

\(=\frac{-1}{2}\cdot\frac{-2}{3}\cdot\frac{-3}{4}\cdot...\cdot\frac{-2017}{2018}\)

\(=\frac{-1\cdot2017}{2018}=\frac{-2017}{2018}\)

19 tháng 5 2020

thật sự mị ko biết

19 tháng 5 2020

B=1,59(285714)

HOK TỐT

26 tháng 7 2023

\(S=1+2+...+2^{2017}\)

\(2S=2+2^2+...+2^{2018}\)

\(2S-S=2+2^2+...+2^{2018}-1-2-...-2^{2017}\)

\(S=2^{2018}-1\)

\(S=3+3^2+...+3^{2017}\)

\(3S=3^2+3^3+...+3^{2018}\)

\(3S-S=3^2+3^3+...+3^{2018}-3-3^2-...-3^{2017}\)

\(2S=3^{2018}-3\)

\(S=\dfrac{3^{2018}-3}{2}\)

\(S=4+4^2+...+4^{2017}\)

\(4S=4^2+4^3+...+4^{2018}\)

\(4S-S=4^2+4^3+...+4^{2018}-4-4^2-...-4^{2017}\)

\(3S=4^{2018}-4\)

\(S=\dfrac{4^{2018}-4}{3}\)

\(S=5+5^2+...+5^{2017}\)

\(5S=5^2+5^3+...+5^{2018}\)

\(5S-S=5^2+5^3+...+5^{2018}-5-5^2-...-5^{2017}\)

\(4S=5^{2018}-5\)

\(S=\dfrac{5^{2018}-5}{4}\)

a) S=1+2+22+...+22017

=> 2S=2.(1+2+22+...+22017)

=>2S=2+22+23+...+22018

=>S=(2+22+23+ ..+22018) - (1+2+22+ ....+22017 )

=> S =22018-1

 

8 tháng 7 2019

a) \(\left(x-5\right)^{12}=\left(x-5\right)^{10}\)

\(\Rightarrow\left(x-5\right)^{12}-\left(x-5\right)^{10}=0\)

\(\Rightarrow\left(x-5\right)^{10}\left[\left(x-5\right)^2-1\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0\\\left(x-5\right)^2-1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0^{10}\\\left(x-5\right)^2=0+1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\\left(x-5\right)^2=1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0+5\\\left(x-5\right)^2=1^2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=5\\x-5=\pm1\end{cases}}\)

\(\Rightarrow x=5;\orbr{\begin{cases}x-5=1\\x-5=-1\end{cases}}\)

\(\Rightarrow x=5;\orbr{\begin{cases}x=1+5\\x=-1+5\end{cases}}\)

\(\Rightarrow x=5;\orbr{\begin{cases}x=4\\x=6\end{cases}}\)

Vậy x = 4 hoặc x = 5 hoặc x = 6 

\(a)\left(x-5\right)^{12}=\left(x-5\right)^{10}\)

\(\Leftrightarrow\left(x-5\right)^{12}-\left(x-5\right)^{10}=0\)

\(\Leftrightarrow\left(x-5\right)^{10}\left[\left(x-5\right)^2-1\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0\\\left(x-5\right)^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\\left(x-4\right)\left(x-6\right)=0\end{cases}}\)

[  ra \(\left(x-4\right)\left(x-6\right)\)do \(\left(x-5\right)^2-1=\left(x-5-1\right)\left(x-5+1\right)=\left(x-6\right)\left(x-4\right)\)]

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4;x=6\end{cases}}\)

_Minh ngụy_

4 tháng 6 2021

khó quá bẹn gì đấy ơi

2 tháng 4 2017

\(a,x:\left(-\frac{15}{28}\right)=\frac{21}{35}\)

                      \(x=\frac{21}{35}\times\left(-\frac{15}{28}\right)\)

                       \(x=-\frac{9}{28}\)

\(b,x-\frac{1}{42}=-\frac{6}{7}\times\frac{5}{7}\)

    \(x-\frac{1}{42}=-\frac{30}{49}\)

                \(x=-\frac{30}{49}+\frac{1}{42}\)

                \(x=-\frac{173}{294}\)

\(c,\left(x-\frac{3}{4}\right):\frac{7}{5}=-\frac{1}{4}\)

               \(x-\frac{3}{4}=-\frac{1}{4}\times\frac{7}{5}\)

               \(x-\frac{3}{4}=-\frac{7}{20}\)

                           \(x=-\frac{7}{20}+\frac{3}{4}\)

                          \(x=\frac{2}{5}\)

2 tháng 4 2017

a)x:-15/28=21/35

x=21/35.-15/28

x=-9/28

b)x-1/42= -6/7.5/7

x-1/42= -6/7.5/7

x-1/42=-30/49

x=-30/49+1/42

x=-173/294

c)(x-3/4):7/5=-1/4

x-3/4=-1/4.7/5

x-3/4=-7/20

x=-7/20+3/4

x=2/5

có gì sai xin tha thứ giùm nha!

hi hi!!!

19 tháng 3 2018

Ta có : 

\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)}=\frac{2003}{2005}\)

\(\Leftrightarrow\)\(1+2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2003}{2005}\)

\(\Leftrightarrow\)\(1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2003}{2005}\)

\(\Leftrightarrow\)\(1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2003}{2005}\)

\(\Leftrightarrow\)\(1+2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2003}{2005}\)

\(\Leftrightarrow\)\(1+1-\frac{2}{x+1}=\frac{2003}{2005}\)

\(\Leftrightarrow\)\(\frac{2}{x+1}=2-\frac{2003}{2005}\)

\(\Leftrightarrow\)\(\frac{2}{x+1}=\frac{2007}{2005}\)

\(\Leftrightarrow\)\(x+1=2:\frac{2007}{2005}\)

\(\Leftrightarrow\)\(x+1=\frac{4010}{2007}\)

\(\Leftrightarrow\)\(x=\frac{4010}{2007}-1\)

\(\Leftrightarrow\)\(x=\frac{2003}{2007}\)

Vậy \(x=\frac{2003}{2007}\)

Chúc bạn học tốt ~