K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2018

\(\frac{1}{8}.16^n=2^n\)

\(16^n=2^n:\frac{1}{8}\)

\(16^n=2^n.8\)

\(16^n=2^n.2^3\)

\(\left(2^4\right)^n=2^{n+3}\)

\(2^{4n}=2^{n+3}\)

\(\Rightarrow4n=n+3\)

\(4n-n=3\)

\(3n=3\)

\(n=1\)

\(KL:n=1\)

CHÚC BN HỌC TỐT!!!!!

30 tháng 10 2017

a)

\(n+4⋮n+1\Leftrightarrow\left(n+1\right)+3⋮n+1\)

\(3⋮n+1\)(vì n+1 chia hết cho n+1)

\(\Rightarrow n+1\inƯ\left(3\right)=\left\{1;3\right\}\)

\(n+1=1\Rightarrow n=0\)

\(n+1=3\Rightarrow n=2\)

Vậy \(n\in\left\{0;2\right\}\)

b) 

\(2n+3⋮n+1\Leftrightarrow2\left(n+1\right)+1⋮n+1\)

\(\Rightarrow1⋮n+1\)(vì 2(n+1) chia hết cho n+1)

\(\Rightarrow n+1\inƯ\left(1\right)=\left\{1\right\}\)

\(\Rightarrow n+1=1\Rightarrow n=0\)

Vậy \(n=0\)

30 tháng 10 2017

o  a la 125

b la 1524,786

30 tháng 10 2017

a)

(n + 4 ) chia hết ( n + 1 )

(n + 1 ) +3 chia hết ( n + 1 )

vì n+1 luôn chia hết cho n+1 nên để (n + 1 ) +3 chia hết ( n + 1 ) thì 3 cũng phải chia hết cho n+1

=> n+1 thuộc Ư( 3 )

b)

tương tự phần a

cho mk nha

30 tháng 11 2017

ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)

31 tháng 12 2019

(Chú ý : số nguyên tố chỉ có ước là 1 và chính nó nên với số có thể phân tích thành tích hai thừa số thì điều kiện cần để số đó là số nguyên tố là 1 trong 2 thừa số bằng 1.)

Ta có: \(n^3-n^2+n-1=\left(n^3-n^2\right)+\left(n-1\right)=n^2\left(n-1\right)+\left(n-1\right)=\left(n-1\right)\left(n^2+1\right)\)

Để \(n^3-n^2+n-1\) là số nguyên tố 

=> \(\orbr{\begin{cases}n-1=1\\n^2+1=1\end{cases}\Rightarrow}\orbr{\begin{cases}n=2\\n=0\end{cases}}\)

Thử lại với bài toán đầu xem có phù hợp không 

Với n = 2: \(n^3-n^2+n-1=2^3-2^2+2-1=5\)là số nguyên tố nên n = 2 thỏa mãn.

Với n = 0 :  \(n^3-n^2+n-1=-1\)không là số nguyên tố.

Vậy n = 2.

8 tháng 2 2020

a) n + 7 = n + 2 + 5 chia hết cho n + 2

=> 5 chia hết cho n + 2 thì n+7 chia hết cho n+2

=> n+2 thuộc tập cộng trừ 1, cộng trừ 5

kẻ bảng => n = -1; -3; 3; -7

b) n+1 là bội của n-5

=> n+1 chia hết cho n-5

=> n-5 + 6 chia hết cho n-5

=> Để n+1 chia hết cho n-5 thì 6 chia hết cho n-5

=> n-5 thuộc tập cộng trừ 1; 2; 3; 6 

kẻ bảng => n = 6; 4; 7; 3; 8; 2; 11; -1

8 tháng 2 2020

a)Ta có:  (n+7)\(⋮\)(n+2)

    \(\Rightarrow\) (n+2+5)\(⋮\)(n+2)

    Mà: (n+2)\(⋮\) (n+2)

    \(\Rightarrow\) 5\(⋮\)(n+2)

     \(\Rightarrow\) n+2\(\in\) Ư(5)={1;-1;5;-5}

     \(\Rightarrow\) n\(\in\){-1;-3;3;-7}

17 tháng 12 2018

Ta có :n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n-4 chia hết cho n-2

=> 10-2n-(2n-4) chia hết cho n-2 => 10-2n-2n+4 chia hết cho n-2 => 14 chia hết cho n-2

            Còn lại tự tìm

17 tháng 12 2018

\(10-2n⋮n-2\)

\(\Rightarrow6-2n-4⋮n-2\)

\(\Rightarrow6-2(n-2)⋮n-2\)

\(\Rightarrow6⋮n-2\)

\(\Rightarrow n-2\inƯ(6)=\left\{1;2;3;6\right\}\)

\(\text{Ta có bảng sau :}\)

\(n-2\)\(1\)\(2\)\(3\)\(6\)
\(n\)\(3\)\(4\)\(5\)\(8\)