Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình :
Trên một khúc sông, một ca nô tuần tra đi xuôi dòng 96 km và ngược dòng 48km mất tất cả 5 giờ. Một lần khác, ca nô tuần tra đó đi xuôi dòng 48 km và ngược dòng 60km
mất 4 giờ. Tính vận tốc riêng của ca nô tuần tra và vận tốc dòng nước khi di chuyển trên khúc sông này, biết vận tốc ca nô và vận tốc dòng nước đều không thay đổi.
Lời giải:
Gọi vận tốc xuôi dòng là $a$ (km/h) và vận tốc ngược dòng là $b$ (km/h)
Theo bài ra ta có:
\(\left\{\begin{matrix} \frac{96}{a}+\frac{48}{b}=5\\ \frac{48}{a}+\frac{60}{b}=4\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{32}\\ \frac{1}{b}=\frac{1}{24}\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} a=32\\ b=24\end{matrix}\right.\) (km/h)
Vận tốc riêng của cano: $(32+24):2=28$ (km/h)
Vận tốc dòng nước: $32-28=4$ (km/h)