K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

a/ \(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\)

\(\Leftrightarrow\left(1+x\right)\left(1+\sqrt{xy}\right)+\left(1+y\right)\left(1+\sqrt{xy}\right)-2\left(1+x\right)\left(1+y\right)\le0\)

\(\Leftrightarrow x\sqrt{xy}+2\sqrt{xy}+y\sqrt{xy}-x-y-2xy\le0\)

\(\Leftrightarrow\sqrt{xy}\left(x-2\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\le0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{xy}-1\right)\le0\) đúng vì \(x,y\le1\)

b/ Vì \(\hept{\begin{cases}0\le x\le y\le z\le t\\yt\le1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}xz\le1\\yt\le1\end{cases}}\)

Áp dụng câu a ta được

\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+t}\le\frac{2}{1+\sqrt{xz}}+\frac{2}{1+\sqrt{yt}}\le\frac{4}{1+\sqrt[4]{xyzt}}\)

15 tháng 6 2017

khó quá

NV
12 tháng 6 2019

\(P=x+y+z+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge x+y+z+\frac{18}{x+y+z}\)

\(P\ge x+y+z+\frac{1}{x+y+z}+\frac{17}{x+y+z}\)

\(P\ge2\sqrt{\left(x+y+z\right)\frac{1}{\left(x+y+z\right)}}+\frac{17}{1}=19\)

\(P_{min}=19\) khi \(x=y=z=\frac{1}{3}\)

14 tháng 5 2019

Câu hỏi của Kaitou Kid(Kid-sama) - Toán lớp 7 . Bạn check thử cái cách "Bài này lớp 7 dư sức giải..." nhé! Mình đọc nhiều đề thi hsg để tự luyện thấy lời giải của họ như vậy (không có chỗ dấu "=" xảy ra nha,cái chỗ này mình tự thêm) .Không biết đúng hay sai.Còn mấy cách kia là mình tự làm nhé!