Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\ge\frac{9}{2x+y+z+x+2y+z+x+y+2z}=\frac{9}{4\left(x+y+z\right)}\ge\frac{9}{4}.1=\frac{9}{4}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Áp dụng Bất đẳng thức: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (Tự chứng minh)
\(\Rightarrow C=\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2xz}=\frac{9}{\left(x+y+z\right)^2}\ge\frac{9}{3^2}=1\)Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)
\(C=\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}\ge\frac{9}{3^2}=1\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Áp dụng BĐT :
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ≥ 9
Trong đó : a = xy ; b = yz ; c = xz
⇒ ( xy + yz + xz )\(\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)\) ≥ 9 ( * )
Áp dụng BĐT cô - si :
x2 + y2 ≥ 2xy ( x > 0 ; y > 0) ( 1 )
y2 + z2 ≥ 2yz ( y > 0 ; z > 0 ) ( 2)
z2 + x2 ≥ 2xz ( z >0 ; x > 0) ( 3)
Cộng từng vế của ( 1 ; 2 ; 3) ⇒ x2 + y2 + z2 ≥ xy + yz + xz ( **)
Từ ( * ; **)
⇒(x2 + y2 + z2).A ≥ ( xy + yz + xz). A ≥ 9
⇒ 3A ≥ 9
⇒ A ≥ 3
⇒ AMIN = 3 ⇔ x = y = z
Gợi ý :
Bài 3 :
\(5\left(x^2+2x+1\right)+2\left(y^2+2y+1\right)=13\)
\(\Leftrightarrow5\left(x+1\right)^2+2\left(y+1\right)^2=13\)
Bài 2 :
GTLN: Do a,b tự nhiên nên a,b > 0
Áp dụng Cô si ta có :
\(ab\le\frac{\left(a+b\right)^2}{4}=\frac{n^2}{4}\)
Ai lm giúp mk vs câu nào cũng được. Ai làm xong sớm nhất sẽ được tick
\(yz-xt=y\left(x+t-y\right)-xt=xy-xt+y\left(t-y\right)\)
\(=-x\left(t-y\right)+y\left(t-y\right)=\left(y-x\right)\left(t-y\right)\ge0\)
\(\Rightarrow yz\ge xt\)